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Abstract
The communication capacity of a single wideband satellite
chancel can be similtaneocusly shared by a number of users by means of
t spread-spectrum multiple-access (SSMA). In phase-coded SSMA the multiple-
B ; access capability is provided by phase modulating a distinct signature
’ ‘ sequence oato the user's carrier which spreads the user data over a
§A wide bandwidth. All of the important code parameters rfor the analysis
. of asuch a system can be derived from the aperiodic correlation functions
of the signature sequences. The asymptotic behavior of such code param-
eters is considered for random binary sequences for which the sequence
! length grows very large. New sets of pseudo-random or m-gsequences with
optimal aperiodic autocorrelation and cross-correlation properties are
obtained. The relationship between the first few central moments of the
aperiodic correlation functions and the characteristic polynomials

generating the m-sequences is analyzed and the vesults are compared with

actual sequence data.

Gauss' product of cyclctomic co- . 185 used to establish new
analytical results on the periodic correlation properties of Gold sequences
and Kasami sequences ylelding subsets of sequences whose correlation

i% :;; ' parameters satisfy tighter bounds than previously established for the

1 ;. ) entire sequence sets., Numerical data on the relevant correlaticn parameters

L2 S1E

{5 obtained for a large number of good signature sequences.
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i CHAPTER 1

INTRODUCTION

B T N

i 1.1, Spread-spectrum multiple-access communication

In recent years there has been a large increase in the number

of satellite commnication programs for civilian as well as military

?1 ) -; : purposes. Pritchard (1977) lists 32 satellite systems currently in use.
1 A major advantage of a synchronous or geostationary satellite is the
wide coverage area which enables a number of widely dispersed users to
have similtaneocus access to the satellite transporter. The user

channel separation can be achieved in a variety of ways:

; 1) Frequency-division multiple-access (FDMA) i{s a coumon form of multiple-
3 31 | access where each ground station has a different, precisely determined
caxrier frequency. Single-channel-per-carrier as well as multiplexing
to multi-channels-per-carrier i{s possible and fits well within non-digital
E 3 f terrestial commnicatiocn networks.

}’ 3 2) 1f precise time cooperation between the transmitting stations is possible

; <|L\ <l

cae can adopt the very efficieat time-division multiple-access (TDMA) in
'; g vhich each user has the same carrier but operates in a different time
siot. TDMA fits better in digitized commmnication networks.

3) In Code-division multiple-access the channel separation is primarily
due to coding vhile no precise frequency or timing cooperation between
the Cransmitting statfcns is necessary. Applicatjons are, among others,

{a tracking and data-relay systems (Stampfl, et al., 1970), air trafiic

5’ % ccatrol (Stiglitz, 1973) and wntlitary satellite coomunication systems
3 . (Gerhavdz, 1973). Spread-spectrum techniques are charactarized by the use
~- e ) e oo
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of a great deal more modulated RF bandwidth than normally would be required
for transmitting the user information. The two most common forms of
spread-spectrum techniques employed in CDMA are frequency-hopping and direct
sequence modulation (Dixon, 1976). Frequency-hopping was used in the TATS
modulation system and is described in Drouilhet (1969). 1In direct

sequence modulation the multiple-access capability is provided by a high-
rate code sequence which phase modulates -- together with the data

sequence -- the user's carrier. The receiver station will recover the
information by means »f correlation techniques. The phase-coded spread-
spectrum multiple-access (SSMA) method is very attractive for communication
systems which also require protection against malicious interference and
unauthorized listeming (Gerhardt, 1973).

The performance of the SSMA system depends oun the correlation
properties of the high-speed signature sequences. In the past (Aeim, 1965),
(Blasbalg, 1965) most of the attention was focused on the periodic
correlation properties of the signature sequences because in most cases
a synchrouous communication model was assumed. In the next section we
introduce an ssynchronous SSMA system wmodel -- earlier presented by
Pursley (1974) -- vhich makes it possible to identify the correlation param-
eters of interest for the communication performsnce as well as for the

synchronization performance.

1.2. Phase-coded SSMA system wmodel

We will cocsider the SSMA systen wmodel as given in Figure 1 for
K traansmitting statious or users. The i-th user's daca signal bi(t) fs a

sequence of positive and negative pulses of duration T and unit aspiitude,
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where bi ) €{+1, -1} denotes the i-th user's information bit stream and
vulse pT(t) =1 for 05 t< and pT(t) = 0, otherwlise. The code wave
form which binary phase modulates the user's RF carrier frequency can be
expressed as
a )= 1z u @) (t-31.) (1.2)
i 2o b T,

where {uj(i)} represents the discrete signature sequence of the i-th user,
and has period p = T/T, and elements of {+1,-1}.

For an asynchronous system where no timing referemce for the K
users is assumed, the received signal at the message destination can be

expressed us

K Py
r(t) = igl(zr)z a, (t=7,)b, (t-T,Jeos (o t +6,) +n(t) . 1.3)

Here n(t) reprisents the channel noise which we assume to be a white
Gaussian process with two-sided spectral density NO/Z, w, represents

the common RF caenter frequency and P the common signal power. Unequal
signal powers can easily be incorporated in the results. TIf the received
signal v(t) is the input to a synchronized correlation receiver matched
to the i-th user signal, the output at sample moment t = T is given by

Pursley (1974) as

T

(2) ;
2, (D) = 3 {bi,o + T+ k§1 Si,k(Tk)} + g a(t)a, (t)eos u t dt .

kil

nf

(1.4)




; ; where si,k(Tk) -- with {uj} = {uj(i}} and {vj} = {Lj(k)} -- equals

for ‘k T, < Tks (zk+1)Tc

,___..-__,

L e e e o

by 0{ GBOT + (8 () - vuk)](fk-zkrc)}cos 9,
1£ b0 TPy, -1
TSI
by ol8, LT ¥ [a oeip) - u,v“k)]("k"k T_)}cos @,

AT _ 1£b, o0 - (1.5)

T T e

I The discrete cross-correlation functions Gu v(!,) and gu v(z) for the
H 3 3

i _ sequences u = {uj} and v = {vj} are defined as

au’v(z) = Cu,v(!.-p) + Cu,v("’) y 05 4 S p-1

(1.6)
éu,v(z) = Cyydp) - Cu,v("') , 0S5 245 p-1

vhere Cu v(.t) denotes the aperindic cross-correlation function defined as
?

[

rp-l-l, ;
jfo LA 0S 4L s p-1

c @) = 4 p-1+4
u,v T “jozvj l-p SL<0
ij=0

g Lo Y (L.

Observe that C (L) = C_  (-4), thus the periodic (or even)
u,v v,u

crods-correlation function 6 (L) satisfies 8 () = §_ _(p~4) where
u, u,v v,u

v »
as function éu v(l,) satisfies &

»

’v(z) = - ev’“(p-z) -- hence, Magsey and

Uthrap (1974) called the latter the odd cross-correlation functioum.

L AETIGT ML s 1 -
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‘In order for the correlation receiver to operate properly it
should be synchronized with the i-th user's signal. The synchronization
decisions are derived from Zi(T) in (1.4) which will contain the periodic
autocorrelation function eu(z) = eu’u(t) or the odd autocorrelation function
§u(£) = 6“-n(£) as long as the receiver is not yet synchronized or has lost
synchronization. The autocorrelation functions will also appear in Zi(T)

when multipath interference Is present in the channel (Massey and Uhran, 1969).

1.3. Worst-casz performance

The function Si k(‘rk) in equation (1.4) achieves a maximum value
]
with respect to Tk and mk whenever T = szc, for some integer Zk’ and mk = Q.
T - z a . s
The resulting values of Si,k( k) are + Pu,v( k) or + Gu,v(ik) Hence the
maximm value of the error probability Pr{z (T) >0/b, = - 1} will be
minimized by selecting a set of gignature sequences for which the peak

parameters

By (BV) = mx{leu’v(z)i : 0S LS p-1) (1.8)
and

8 @) = max{|8, (] 10524 p-1) (1.9)

are small. The same result is obtained for bi 0™ + 1.
Not only 8 _ (u,v) itself but also the number of times IB (Ll
max u,v
takes on this maxipum value -~ wvhen £ = 0,1,..., p=i1 - i3 of interest.

Let {lx!! denote the cardinality of X, then we define

e = {2 :fo, (O] =9 (w3} ;0525 pn}l. (1.10)

]

Furthe:more one defines for a set S of sequences,




9, = max{em(u,v) : u€s , ve€s} . (1.11)

The parameters fc and gc are dafined as in (1.10) and (1.1l1) respectively
with 6 replaced by 8.
Pursley (1976a) pointed out that the worst-case probability of

detection error Pmax can be written as

B =1-81- N/PIN2E /N ) (1.12)

ma.

where & is the standard Gaussian cumulative digstributisn function, Eb = PT

the energy per ds%a bit and A = max{ec,ec}.

For the autocorrelation functions we define the parameters

8 g (W) = m{leu(z)! .15 1< p-1) (1.13)
ta = [[{s: [e ()] =0_ (w) ; 1525 p-1}] (1.14)
and 8, = mar{em(u) : ugS} (1.15)

The parameters smax(“)’ fa and 5& are defined as in (1.13), (1.14) and

(1.15) respectivcly, with 6 repleced by é. In addition we define

OR max'_‘cu(z)l 115 25 pe1) (1.16)

and

C () = max(lc“'v(ﬁ)l :1-pS LS p-1} (1.17)

1.4. Average performance

The average probability of eiror as well as the average signal-

to-noise radio at the roceiver output are i{mportant maasures of the




average system performance given a set of signature sequences. The former
is hard to compute but Yao (1976) obtained upper and lower bounds on its
value. The evaluation of those bounds requires extensive knowledge of

the aperiodic cross-correlation functionms.

Assume the phase shifts P time delays T, and the data symbols

k

b and b 1S k<K, k # i to be mitually independent random

k,0 k,~1’

variables. Also assume that wk and v, are uniformly distributed over

k
[0,27™] and [0,T] respectively and the data symbols bk P take on values

?
+1 or -1 with equal probability for k # i. By obtaining the mathematical
expectation and the variance of Zi(T), Pursley (1974) showed that the

average (power) signal-to-noise ratioc at the i-th user receiver output in

an asynchronous SSMA system can be expressed as

SNR, = {;;i * Qa}~1 (1.18)

where the asynchronous interference Qa equals

K

Q = 6pH ! £ r@® o ®) (1.19)
a k=1
k#

with the interference parameter r(u,v) defined as

p-1 )
{
(u,v) = z-f-p {2c, ;) +c [thic,  (a+1)] (1.20)

Yao showed that Pe = 1 - %Q/SNRC) {s a very good approximation of the
actual average error precbability for many practical values of p and K.
Clearly, detailed lmowledge of r(u,v) for prospective sets of signatures

is important in the paerformance analysis. In some cases the product




e e

C, v(L)Cu’v(u-l) does not contribute to r(u,v) as is shown in Appendix A
] ]
for Barker sequences (Barker, 1953) of odd lemgth p.

Important measures on the autocorrelation functions are

p-? 2
Mu) = & 6 () (1.21)
=1 ¢
and
PS P‘l A9
M(u) = & 8 (4) (1.22)
=1 U

which can be used -- in addition to the worst-case performance measures =-

as gieves for sequences with good synchronization capabilities. Observe

that
M(a) + M(u) = 4S(u) (1.23)
where
p-1 2
S(u)= T ¢ () , (1.24)
=1 Y

Parameter S(u) is called the sidelobe energy of a sequence and was

previously considered by, among others, Lindnmer (1975) and Golay (1977).

1.5. Qutline of the study

Chapter 2 inveatigates the various sequence parameters described
above, for random binary sequences for which sequence length p grows very
large. An approximation of SNR‘ is obtained which is very accurate for
typical values of X, p and 3b/No.

Chapter 3 discusses the code parametars for maximum-length
sequences generated by primitive polynomials. New sets of sequences with

optimal autocorrelation as well as cross-correlation properties are obtaimed.
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Chapter 4 investigates the relationship between the aperiodic
correlation functions of maximum-length sequences and the primitive
polynomials which generate those sequences. 1In particular, the third
central moments of the odd correlation functions are obtained and compared
with actual sequence data.

Chapter 5 investigates sets of sequences generated by products
of primitive polynomials such as Gold sequences (Gold, 1967) and
Kasami sequences (Rasami, 1966). A method -- based on Gauss' products of
cyclotomic cosets -- is given which yields large subsets of sequences
with better correlation properties. The relevant correlation parameters

of 4 large number of good subsets are obtained.

e e e e e s e e [ —
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CHAPTER 2

CORRELATION PARAMETERS OF RANDOM BINARY SEQUENCES

This chapter considers the asymptotic behavior of the various code

parameters described in Chapter 1, for random binary sequences.

2.1. Aperiodic correlation parameters

In a practical realization of a SSMA system, the signature
sequence length p 18 constrained for obvious technical reasons. Notwith-
standing this fact, it is still of interest to study the asymptotic behavior
of random binary sequences for which the sequence length p grows very large.
By random binary sequences we mean binary sequences of independent identi-

cally distributed random variables u,, for which Pr{uj=+1} = Pr{uj=-1} = &,

j’
p-1-4
<4Sp- = Z < p-
Let 0S £ S p-1. Then, Cu,v(l) ot ujvj+£. Suppose |t| p-L.

~ = itne
In order that Lu’v(z) r, it must be that “j = vj+i for exactly 5(p=4+4t)
integer values of j in the range 0 S j < p-1-2. Hence, if p=-4+r is even,

there are

; Pt
b) = (10 i)

choices for (uo,ul,...,up_l_z). Since there are 2P choices for v and ZL

choices for (“p-i""’“p-l)’ there are a total of
b(t,pr) = 2P 2% b(t,p,0) @.1)

sequence pairs (u,v) for which Cu v(t) = r, provided p-i+r {8 a2ven. 1In
]

the special cagse that u=v, there are
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hW@,p,r) =2 bL,p,r), 1s£ < p-1
sequence pairs (u,u), i.e., sequences u, for which cu(z) =r, L &0,
Notice also that h(O,p,p) = 2P,
Recall that
C g (W) = max {le,(]: 152 s p-1]
and
me(u,v) = max {Cm(u,v), me(v:u)}
where
Cpay (UrV) = max ch,v(l)h 04 % p-l1}.
Moon and Moser (1968) showed that for ¢ > 0,
log C___(u)
max
- l P-4 20
% log p ¢ (2.2)

for almost none of the binary sequences of length p, i.e,, for only a fraction

v (p) of the sequences, where £im y(p) = 0. Or, alternmatively,

pnm

log Cmax(u)

Pr({ |——S8X_
ylog p

-1 2¢) £y (2.3)

for u chosen st random from the set of all possible sequences. In Appendix
B we show, analogous to the proof of (2.2) by Moon and Moser, that if u aand

v are drawa at random from the set of all 22p sequence pairs, then

. s e FE - e -
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2¢) SY(p) (2.4)

where lim y(p) = O.

pd@

2,2, Bounds on the set size of 'good' sequence pairs

A consequence of the expressions (2.3) and (2.4) is the following,
Fix ¢ £ 1. The set of all 22p sequence pairs is purged of all pairs for which

the event in (2.4) occurs. This gives a set Al(p) which has cardinality

HAl(p)I. The expected value of “Al(P)“ is lower-bounded by
2p ~ .
la @l 2 27a - ¥ .
Hence, there exists at least one set, say Az(p), with

la, il = 2°P¢1 - §e))

Notice that Az(p) does not coutain any sequence pair of the form (u,u)
because emax(u,u) = p. This problem is easily resolved, however, because

expression (2.3) implies that there exists at least one set, say Bz(p) with

B, @il 2 2°1 = y(e)).

The union of Az(p) and Bz(p) yields a set of sequence pairs with cardinality

lower-bounded by

la (3 U B, 2 22%(1 - S(p) + 2P0 - y(o0)) (2.5)

g e - 4 e ——— - e ey
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for whichlc (u) as well as C___(u,v) are contained within the range
max max

tp%(l-e), p§(1+€)3. Furthermore, “Az(p) U Bz(p)“ grows exponentially with p
as 22p because AZ(p), which is the compliment of Az(p), and hcace

HAz(p) U Bz(p)Hcy contains only a vanishingly smali fraction of pairs, i.e.,

Z-ZPHAg(p)“ £ y(p) and lim y(p) = 0. Above result shows that there exists at

p-om

least one very large set of sequence pairs (u,v) for which

+€
PP sc (u) € o 50, uay (2.6)

and

X+e

-€
P sc (u,v) £pT, 6> 0, u kv, 2.7)

The size of this set grows exponentially with p as 229.

Discussion

The growth of the size of at least one set of sequences u, a&s subset
of Az(p) U Bz(p), for which then (2.6) and (2.7) will hold simultaneously,
remains an unsolved problem. Schneider and Orr (1975) consider the cardinality
of a set A(p) obtained by purging the set of all 2P sequences, of all sequences
which violate the upperbound of (2.6) and which form pairs which in tuxn
violate the upperbound of (2.7). Their use of the upperbound only, is here of
minor importance. The purging method itself, however, has a disastrous effect

on the loverbound of the expected value of HA(p)H. Suppose, for example, that




¢

a certain'sequence u will form, with many other sequences v, sequence pairs
(u,v) which violate the (upper) bound in (2.7). Schneider and Orr == see their
equation (20) ~«- not only remove sequence u but all the other sequences v as
well, from the set of 2P sequences, As a result, the lower bound of the

expected value of ||A(p)|| #1il not grow exponentially with p.

2,3, Asynchronous interference parameters

let v and v be two random binary seguetuces (not necessarily distinct),

with |2| s p-1 and |z| S p - |2], equation (2.1) implies

p - 4] lne
pr{c  (4) =1} = 2= (e=l¢) (2.8)
s p - Ja]4r
2

Thif nrobability mass function implies a moment generating function

M_(t) = E{exp[tcu’v(z)]}

p=d

on E{exp[cuj vj+i3} 0%4s p-1
pHi
T Elexp{tu

v,]}] l-pst'<0
j=0 ’

j=1

p-12]
= 1 y(exp(t) + exp(-t);
i=0

(coshey? 12l (2.9)

Hence the first four moments of Cu v(L) are
1

T e e . N - . agp—— —— -




oM (t)

E{Cu v(")} - gt It-o = (p-|t|)(cos ht)p-ul-l sin ht

azu (t)

2 -lel-
E{ci’v(z)} -— | - 2("'! I)(r.:os ht)P |21-24142,

at t=0

+ (p=|£])(cos ht)p-lzl-lcos hc‘

I a similar manner,

3

3™ (t)
3 c
E{cu,vcz)} - -

and 4
3 M (t) -4
4 c P
E{C (z)} § — =
wv act It-O “( 2

__3__|

= p-lef
£=0

=0

t=0

)+ (p-2|£.l) + (-1t

- 3p=|2])? - 2¢p-]2]) -

Furtherwore, for £ # a,

p-léi p-l4a

E{Cu.v(f.)cu’v(m)/f. <0m< Q) = jEO

In fact, it (s easy to show that

E{Cu'v(f._)cu.v(m)} -9

and

3
E[cu’vcz)c“'v(u)} -0

n=(0

T E[ujv

Yi,Vm L gnm

Vi¥o £

jﬁunvm} ¢
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) while

E{C\Zx,vu')ci,v(m)} = (p-|t)(p=|m]) Y £4,¥m, & #a.

Above results enable us to calculate the mathematical expectation and
the variance of the asynchronous interference Qa as defined in (1.19).

First we obtain the first and second moment of the interference parameter

'—~ 3 r(u,v).
T { p-1 { 2
L E{r(u,v)} = z-§ E 2cu’v(z) + cu’v(z)cu’v(zﬂ)} ,
; . -p
Pl
3 = T 20-[2])
1 i=l-p
- 292 (2.12)
- p-1 p-1
g B(ricu,v)} =B T 22 @))% +E £ c () (e}’
. falep u,v tel-p u,v u,v
_ : p-1 2 p=1 ‘
;o +E(2£_§_ 2,08 T ¢, @)X, =) . (2.13)
-1 -1, p-1  p-l ,
.. 3 B ot wnfesl T el T oTocl el @)
telep W t=l-p % ge=l-p aml-p * ’
L da
p-l 2 3
3 =& T [3e-[t)" - 2p-{2])]
:' L i=l-p
3 p-l 12 p-1 2
k4 vd o oprlih e e’
THE t=i-e T bt
\ \ ) - épa +* -1-3§- 93 - sz 1"% ) (2.14)
o
3 i




o
1
:
3
3
.

| (U

L

LSO PP

P

and
p~1 2 p-1
E = C, (z)c (z+1)1 - Bf z c (z)c (z+1)}
g=l-p © g=l-p °
p-1 p-1
+ E 1
{L;ﬁ-p mgi-pcu,v(z)cu,v(z+ )Cu,v(m)cu,v
L Am
p~1
= z (p-|z|)<p-lz+1|>
L=1l-p
2 3 2
=3P °3°P
while

p-
B2 ¢ 2c S T c @m0 (m+l)} =0 .
Il.l-p u’ m.l-p ’ u’v
Hence, substituting (2.14), {2.15), and (2.16) into (2,13) gives
E{rz(u,v)} = 4p4 + 6p3 - 8p2 + 2p .

In a straightforward manner one obtains with (2.12)

K
Bq = 6p%) "t B ¢ ru®,u{®y)
a kel
kki

= (6p°) " L(R-1) E{z(u,v))

= 3p) " Lk-1)

while

18

(m+1)}

(2.15)

(2.16)

(2.17)

(2.18)
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var(q,) = E(Q)) - E%q
= (36p°) "L (k-1) var(r (u,v))
thus
var(Q,) = (36p") " (k1) (65> - 8p° + 2p)
and therefore

var(Q,) = (6p3)'1(1<-1) (2.19)

for large sequence length p,
2,4. Asynchronous interference versus synchronous interference

A system is considered to be synchronous when the relative shift r
between the signature sequences equals zero. The RF-phases of the signal
carriers, however, are still assumed to be independent random variables,
uniformly distributed over the range [0,2m]. The signal-to-noise ratio
at the output of a correlation receiver, synchronized (frame and bit) with

iws cwn signature sequence equals
Yooy
- o wm—— (S
SIR, {mb +q) (2.20)
whare the synchronous interference Qs equais

K
-1 r (u(i)

kel ® ’
ki

Q, = (2p) ul¥) (2.21)

vhere rs(u,v) - Ci v(0). Wolf and Elepas (1965) darived EQs and var(Qs)
, ‘
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for random binary sequences,

B, = (29) M (x-1) (2.22)

-1
var(q,) = (2p°) (k-1). (2.23)

Of course, in a practical synchronous system, one may want to consider an
i orthogonal set of signature sequences for which Cn v(0) = (), as long as the
! s

synchronization requirements can be met., From (2.18) and (2.22) we have

the well~known result, reported by Harris (1973),

2
EQa =3 EQ8 . (2.24)
In addition, however, we have now also

-1

var(Q,) = 3p) L - % p o+ -:1; p'2]var(os)

Qr
var(Q) & (3p) " var(q,) (2.25)

for large sequence length p.

Let the asynchronous fluctuation ratio Ra be defined by
-1
R, = 10 10310[[EQa - Jvar(Qa)] [EQa +~/var(Qa)]}. (2.26)

The ayonchronous fluctuation ratio Rs is defined as in (2.26) with Qa

replaced by Qs' Substitution of EQ8 and var(Qa) into (2.26) gives

B




R, = 10 1og10{[1<-1-3(1<-1)"(6p)"’J “Lg-143-1)%(6p) "} (2.27)
while a similar substitution with EQS and var(Qs) gives
R, = 10 1oglo{tx-1-(2(x-1))’5]'ltx-1+(2(1<-1))”} (2.28)

Expressions (2,27) and (2.28) indicate a rather small value of Ra if
compared with Rs’ Furthermore, Rs does not depend on the sequence length p
but Ra decreases steadily when p increases. The graph in Figure 2 gives
Rs and R8 as functionas of K for a number of sequence length p = 2n-1. For
example, with K = 8 and p = 127, R, =0.364dE while R, =5.1dB. It should
be note§ that a fluctuation of Qa does not produce the same fluctuation in
SWR,. For example, with 10 log, (€, /Ny) =10dB, a ++/var(Q o) fluctuation
of EQa results in an (approximately) + 0.05dB fluctuation of SN’Ra while a
j:ng;(Qs) fluctuation of EQs results in an (approximately) + 0.85dB
fluctuation of SNRS.

Thus, in the analysis and preliminary design of an asynchronous SSMA

system, the approximation

E=1}-1

5 (2.29)

N
Q
SNRa =3 {mb +

is very accurate for typical values of K, p and eb/uo.
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CHAPTER 3

CORRELATION PARAMETERS OF M~SEQUENCES

In a practical spread spectrum multiple access system, the signa-
ture sequences will not be selected at random from the set of all possible
sequences of a certain length p, The sequences must possess certain
qualities, otherwise the SSMA system will not function properly. A
large class of sequence with a number of interesting properties are the
maximum-length shift register sequences or m-sequences. They have been
studied extensively in the literature by Zierler (1959) and Golomb (1967)

and others.

3.1, Introduction to m-sequences

It is convenient to distinguish in our notation between sequence

elements u, € {=1,1} and sequence elements by € {1,0} which are related by

3
%
“j = (-1) 7. (3.1)
A binary m-sequence p of period p = 2“-1, is a sequence which catisfies a

recurrance relation of the form

n
uj+n = 151 fi “j+n-i’ j=0,1,... (3.2)
where
n n-1
£(x) = £ + £,x + ies + fn_lx + fn

is a primitive polynomial of degree n over GF(2), the binary alphabet

{0,1} with addition modulo 2. A polynmomial of degree u is primitive if it
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divides x* - 1 for m = 2% - 1 but not for any m < Zn -~ 1. The roots of a
primitive polynomial of degree n are primitive elemants of the exteasion
field GF(Zn), i.e., they have order 2t - 1, and every nomzero element of
GF(Zn) can be written as a power of some primitive element B. We denote
the minimal polynomial which has Bq as a root by fq(x). Peterson and Weldon
(1972) give extensive tables of primitive polynomials up to degree 3.
Polynomial £(x) represents an n-stage linear feedback shift
register where fo = fn = 1and for 0 < i <, fi = 1 if there is a feedback
tap connected to the ith stage of the register and fi =0 if not; An example

of a shift register represented by f(x) = xa +x + 1 is given in Figure 3.

> Hj+3 > Hj+2 > i+l o Wt — Qutput
CH2H LMo
fo o, |l
-
fii+4 FP-539]

Figure 3. Shift register for £(x) = xA +x+1;p=15.

Let Tu denote the left cyclic shift of sequence u, i.e.,

m - Tmo,ul, ooooo ,u -1) - (ul’%,OOt'o,up_11u0> .
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0f course, Tu is equivalent with Tu. Notice that equation (3.2) implies

T + £ s £, Tu +u=0 (3.3)

1

where 0 denotes the all-zero sequence.
Let tr(x) denote the trace of x, defined by

2 2n-l

tr(x) = x+x + ...00.. +% (3.4)

Then for each nonzero element ¢ in GF(Zn), there exists a solution u of

the recurrence relation (3.2) specified by
uy = ex (el . (3.5)

A proof can be found in Lint (1973). The various solutions W, u # 0,
of (3.2) are simply shifted versions of each other, i.e., the sequences
W, T, Tzu,....,Tp-lu are in the same equivalence class with respect to

shift operator T; W is called the cycle representative. The m-sequence

corresponding to ¥ = 1 satisfies the important property
= v 3.6
by =gy s ¥y (3.6)

and is said to be in its natural orientation or characteristic form.
Henceforth u (or u) denotes the m-sequence in its natural orientation.
Furthermore, Tku corresponds with ¢ = Bk. For each degree n, up to n = 168,
Willett (1976) has computed the characteristic form of one m-sequence.

Let v be any other m-sequence of the same length as u. Suppose

v satisfies a recurrence relatioun specified by fq(x) and let v be in its

natural orientation, then
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(3.7)
Equation (3.7) implies that the characteristic m-sequence v can readily

be determined from the characteristic m-sequence u. Table 1 gives all
characteristic m-sequences up to and including length p = 255. The
primitive polynomials £(x) are denoted in the usual octal notation, for

example

£(x) 4 5

x +x+1 =0.x + ]..x4 + O.x3 + O.xz +1x+1

1]

[010011] =023,

The initizl start position or loading of the shift register is also denoted

o . in octal notation

T (uo,ul, eevse. )y = (0,0,0,1,0,0, ..... )E0465 .

' _ Of course the last two digits of 0465 are here redundant. Henceforth, all
/ loading of shift registers will be given in octal notation except when

indicated otherwise, by means of an asterisk, e.g., as in Table 4.

3.2, The trinomial structure of m~sequences

Another important property of m-sequence W is the so called

shift - and - add property, i.e.,

= ' .
n bopp HHy 0 Y, (3.8)

e Yyt

for some r and £ # 0. In terms of the corresponding m-sequence u over

u, for some r and £ # 0,

{+1, -1}, equation (3.8) becomes Uigr = L) i

R e el (D) .- e —— e e — — —- -




27

e e b et iy

Table 1. Characteristic me-sequences of length p = 15, 31, 63, 127 and 255.

b e A R e s e f Aattn

Poly. Loading Poly. Loading
o p= 15 023 0465 o3 3654
p= 31 ous usy7 051 127
075 7670 057 4460
067 7211 073 7316
p= 63 103 0103 141 3752
147 3753 163 3210
155 3313 133 ol
p = 127 211 ko221 221 byl
17 4126 361 7756
235 4543 271 4566
367 TETH 357 7313
277 44y 375 7757
325 7337 253 4024
203 4020 301 1752
313 7655 323 7230
345 7214 247 4103
p = 255 435 0107 561 0543
551 ouus 4s5 0543
47 3773 717 3234
453 0566 651 3316
545 3216 515 1455
{ 543 0546 615 3670
703 3317 607 3772

765 3650 537 0106

e e —————— e -
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which will be used extensively in Chapter 4. Equation (3.8) can also

be expressed in terms of the cyclic shift operator T,

Ol +u=0. : (3.9)

Recall that m-sequence B already satisfies a recurrence relation as in
(3.2), specified by a minimal polynomial £f(x). Hence (3.9) specifies

for each £ # 0 a binary trinomial of the form
L SO (3.10)

which should be divisible by £(x).
Let ﬂx denote the cyclotomic coset of integers x' mod p

ccataining x as smallest element, i.e.,

ﬂx ={x' : x' = 2jx mod p, xS x' 3 §=0,1, .. } . 3.11)

In some cases ﬂx will be denoted as [x] or x if so indicated. The
cyclotomic cosets of integers modulo p, up to p = 255 are tabulated in
Table 2. Ou each horizontal line a coset and its reciprocal are grouped
together, wheneveir such a reciprocal exists.

The trinomia's in (3.10) have algebraic properties which consider-
ably reduce the effort of “inding r(4) for each value of L. Most important
is the property that whenever 4 € ﬂx and 4'€ ﬂx, than r(f) € ﬂy and
r(z')E‘ny, for some x and y. For example, this can be observed from Table 3
where the trinomials xr(t) + x‘ + 1, divisible by £(x) = xa +x + 1, are
tabulated. A more detailed discussion on trinomials can be found in

Lindholm (1968). 1In Chapter 4 and 5 we will use the trinomial structure of

the m-sequences extensively.
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Table 2.
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LAY S

© o e ey s
ey
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25 50
21 54
37 T4
i3 86
45 90
51 102
85 170

- 2O I 2O

N -

84

100
108
148
172
180
204

MW = O

10
14
18
22
42

12
20

36
hy
52
76
84

24
40
56
72
88

104
120
136
152
168
184
200
216

41
89

105
153

N = O

o o

12
20
28
36
4y

24
40
56
72
88
104
25
41

16
48
80
112
144
176
208
240

k9
81
113
145
171
82
178
210

32
96
160
224
3
97
161
225

98
162
226

35

99
164
101
165

REZE e bR ) A Rl S el i e i RO A ety

16

17
49

50

64
192
65
193
66
194
67
195

196
69
197
70
198
73
202
75

Cyclotomic cosets of integers mod

0

16
17
18

32
33

35
37

64
65
66
67
68
69
70
13

128
129
130
131
132
133
134
125

137
138
139
140
141
146
149
150

p = 15, 31, 639

15

1"

31
15
23

27
13

63
31
a7
15
55
29
23
27
43

27

63
95
3

mn

61
47

119

59
87
29
55
39
91
53

St e

14

30
14
22

62
30
46

54

126

62
9k
30

110

58
46
54
86

254
126
190

62

222
122

94

238
118
174

58

110

78

182
106 212

29
28
13

61
60
29

45
52

125
124
61
60
93
116
92
108
45

253
252
125
124
189
2u4
188

221
236

93
116
220
156
109

27
25
26

59
57
58

41

123
121
122
120
59
105
57
89
90

251
“49
250
248
123
233
121

187
217
186
232
185

57
218

29

127 and 255.

23
19
21

55
51
53

19

119
115
17
13
118
83
114
51
53

247
243
25
241
2u6
21
242

179
17
209
15
114
181

47
39
43

38

m
103
107

99
109

39
101
102
106

239
31
235
227
237
167
229

103
234
163
230
228
107

95
79
87
(A
91
78
75
77
85

223
207
215
199
219

79
203

206
213

7
205
&
2u

169 83 166 77

-

191
159
175
U3
183
158
151

137
171
142
155
147
173
154
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xa +x+1 x13‘+ x6 +1 x12 + xll +1
x8 + xz +1 x9 + x7 + 1 x11 + x12 +1
xl4 + x3 +1 x2 + x8 +1 x6 + x13 +1
x + xa +1 x7 + x9 +1 x3 + xla +1
xlo 4-x5 +1 xs + xlo +1

3.3, Autocorrelation functions

The autocorrelation function of a signature sequence plays a key
role in obtaining word synchronization in the correlation receiver and
in reducing the effects of multipath interference. The periodic auto-
correlation functiom Gu(T) = - 1 for all * # 0 mod p for m-sequences is
nearly ideal in this respect and one of the main advantages of m-sequences.
0f course ease of generation Is another advantage.

while thus 6 m(l‘ku) = 1, Vk for m-sequences, the companion param-
eter ém‘x(Tku) defined in (1.13) is very sensitive to the selacted cyclic
shift T of u. To find cyclic shifts for vhich 8_ (Tu) s minimsl,
a computer search is required. In the process of searching the best Ik,
a number of ties may occur (i.e., a number of different values of k in
Tk result {n the same winiwmal @a‘x(rku)). Hence, a second condition is
applied to the already selected values of k reducing the number of ties

considerably. The second conditicn is stated {n the following definition

which is due to Massey and Uhran (1969).

e e e 4 e gt ——— —v vt em——— - — — - -
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]
Definition 1. An m-sequence u' = Tk u {3 auto-optimal (AQ) -~ with respect
to 5m.x(Tku) -= when the following conditions are satisfied in successive

order:
9 8 @)sSE (o), Y
b) The cardinality La of the set
{e:08,, () =8, (@); 0< £5 p-1]

is smallest for sequence u'.

Observation: It follows immediately from this definition that an auto-

3 | optimal m-sequence generated by primitive polynomial f(x) of degree n has
'i . a reciprocal -- generated by f£f'(x) = xnf(llx) -~ which is AO too.
s Table 4 specifies for each primitive polynomial of degree n = 7,
“é | the loading or start position ¥ sWyseeeeably of the shift register such
'é T that the generated m-sequence is AQ. There are two distinct cyclic shifts
of the m-sequence gemerated by f(x) = x7 +x + 1 (203), both which are AQ.
They are indicated as 203a and 203b. Then, the reciprocal polymomiul
gbg ﬂ% . f(x) = x7 + x6 + 1 (301) will generate two distinst AQ m-sequences too.
The resulting values of émax(u) and Lla for u' are as indicated.

Clearly, there is not one unique set of eighteen xuto-optimal
w-sequences of length p = 127 as was reportad by Massey and Uhran (1969).
Table 4 shows that a total of four distinct sets of eighteen m-sequences

each can be selected by choosing two m-sequences, which are not cyclic

;i 35_ » shifts of each other, from the set {203a, 203b, 30la, 30lb). Furthercore,
é‘ the auto-optimal n~sequences of Massey and Uhran do not seem to be
3 ,E reciprocal pairs.

-~ . . e e m——————e \ e - e —
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Table 4. Auto-optimal m-sequences of length p = 127.

Poly. Loading* Poly. Loading# émx(u) La S(u)
211 0010000 221 1001101 17 6 2183
. 217 0000101 261 1111111 15 12 2015
235 00C1109 271 1000101 17 10 2283
247 0010111 345 0110001 17 8 2255
277 1110001 375 0101010 19 y 2295
357 1110010 367 0110101 17 b 2563
323 1110111 313 1000111 17 b 2203
203a 1101101 301a 0010910 17 4 2087
203b 0000001 301b IARRERR 17 4 2403
325 0000101 253 1101100 19 6 2483

The sidelobe energy paramecer S(u), as defined in (1.24) can also
be used as a sieve for m=-sequences. In particular, we might use S(u) to

further distinguish between AQ m~sequences, Decause for m=-sequences,

A p-1 , :
M@u) = ¥ 86 u(!,) =4 8S(u) ~p+1 {(3.12)
£=1

one of the important parameters in the direct sequence SSMA system.
Hence, it is convenient to extend the definition of auto-optimality

further by including S{u) as a next sieve,

Definition 2. An m-sequence U = Tk'u is indicated as AO/LSE whenever U
is auto-cptimal and has lowest sidelobe energy S(U) among all auto-optimal
shifts of u.

When the m-sequences generated by polynomials 203b and 30lb are
deleted from Table &4, the table will give the AO/LSE m-sequences of length

p= 127,
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3.4. DPeriodic cross-correlation of m-sequences; Golomb's theorem

let u and v be characteristic m-sequences generated by the
primitive polynomials fl(x) and fq(x) respectively. Both m-sequences

are constant over cyclotomic cosets, i.e.,

uj = Uy = X(ﬂi) for j € ﬂi (3.13)
and vy = v2j = X(ﬂqi) for j Gﬂqi (3.14)
where
qi.
x( ) = (DFE (3.15)
q
The periodic cross-correlation eu v(1') is also constant over cyclocomic
3
cogets, i.e.,
A
1 = t = P N R .
Gu,v(f ) eu,V(ZT ) eu,v‘ﬂf” T'GTL_ (3.16)

Gold and Kopitzke (1965) have computed the periodic cross-correlation
Gu V('r) for m-sequences of length p = 8191. The same data can be obtained
>
by means of an jlegant theorem of Golemb (1968}, which is derived as follows.

The Gauss' product of cy.lotomic cosets ﬂx and ﬂy is defined as

nxny = {(sH)modp : s en , °€“y’ . (3.17)

Hence, one can write the following equality

: 3 (_l)tr(asﬂ)_ )tr(ﬁr)

T (-1
€M, tell ¢€1 1

(3.18)
lat ﬂﬂx“ denote the cardinality of cyclotomic coset ﬂx. Then, from the
definition of eu V(T), equations (3.15), (3.16) and (3.18), one obtains

3

Golomb's
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i 1
Theorem 1: Gu,v(ﬂT) = ﬂa-ﬁ z Xu(ﬂ_Tni)X(ﬂqi) (3.19)
T
r
where X(MN)= % ("'l)tr(B ) (3.20)
uxy réﬂxﬂy

and the sum in (3.19) is over all the integers i which represent distinct
cyclotomic cosets ﬂi. Expression (3.19) represents a multiplication of a

vector
Xq = XM Ny (3.21)

of 'coset assignments' to m-sequence v, and the normalized matrix

Ll
X = [”n “ Xu(ﬂxﬂy)] . (3.22)

b

In order to obtain Eu for some m-sequence u of period p one
needs the array of Gauss' cyclotomic coset products {ﬂxﬂy}. Golomb (1963)
specified {ﬂxﬂy} for p = 15 -- here reproduced in Table 5 -- and p = 31;

we present {ﬂxﬂy} for p = 63 in Table 6, where ﬂx is indicated by [x].

An example of Golomb's theorem

Let u and v be m-sequences of length p = 15 generated by the

4 3

polynomials fl(x) = x4 +x + 1 (023) and £,(x) = x + x~ + 1 reaspectively.

The cyclotomic cosets are T, = {0}, nl = {1,2,4,8}, ﬂ3 = {3,6,12,9},
1 - {5,10} and 1, = {7,14,13,11}. The vectors of coset assignments to
m-sequences u and v are

Kl - (X(no). x(ﬂl), x(ﬂ3), x(ﬂs), x(ﬂ7))

- (19 1! -1, 1, -1)

C o e o 4w s s - R voar — -
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oL ‘Table 5. Gauss' products of cyclotomic cosets; p = 15
i _
1
N ¢ .{
: Ty N 113 0 . |

: 'ﬂo no nl T‘3 nS 117

‘ UM ny My #2mg 20 ﬂ1+2ﬂ5 +20, My +0, 4N+ 4T, 4T,
Ny | My M ang 2, WMo +3My M+, 21 2T+,
B ,
p!

1 oo m, +1, NN, 2peng Mo,

] Tl Ty Al ¥l #Tg#Ty 2y 20T, My ATy 20, 420 4T,

‘ and

X7 = &) XM, x(My) 5 x(Mg)s x(My))
b =, -1, -1, 1, 1) .

Evaluation of the Gauss' products {nxny} in Table 5 with (3.20) and (3.22)

results in the matrix

1
)

(3.23)

é><

Multiplication of Z(-u and 2(_7 results in a vector

'e'll,vm-f) = (-1, -1, 3, 73 =5)

e e M rabmtngits S0

———
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or alternatively

-1 if 'reTlo

-5 if TEﬂl

eu’v('r) =< 3 if T€ﬂ3 (3.24)
7 if 're'ﬂs

L-l if T€M,

Whenever two m-sequences, say w and z are decimations of

the m-sequences u and v respectively such that w, = u_, and z, = v__, then

i s} I 8]

p-1 -
6 (r) = jEO usj vsj+$T = eu,v(sT) (3.25)
Hence, to obtain all periodic cross-correlation values for the m-sequences
of a certain length p, it suffices to cetermine one matrix zu' For
p=15 and p = 31, a matrix Eu is given in (3.23) and in Golomb (1968)
regpectively. Table 7 and 8 specify a matiix gu obtained by evaluating
the Gauss' products of cyclotomic cosets for the indicated m-sequences
of length p = 63 and p = 127.

We will encounter vauss' product of cyclotomic cosets in com=

bination with Golomb's thensrem again in Chapter 5 where the periodic cross-

correlation of Goid sequences and Kasami sequences are discussed.

3.5. Maximal connected sets

Gold and Kopitzke (1965) obtained from their data, sets of

m-sequences of period p, called maximal connected gsets, which are the

largest possible subsets of m-sequences for which any two sequences in

the same set have a preferred three-valued periodic cross-correlation
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Gauss' products of cyclotomic cosets evaluated for
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m-gequence u with octal polynomial 103; p = 63.

15 21 23 27 31

13

1

Gauss' products of cyclotomic cosets evaluated for

Table 8.

m-sequence u with octal polynomial 211; p = 127.
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function, i.e., eu v('r) takes on the values _2L(n+2)/2J_1’ 2L(n+2)/2J_1
3

and -1 only. Any pair of primitive polynomials which yields a sequence

pair with a preferred three-valued periodic cross-correlation is called

a preferred pair of polvmomjals as discussed in Pursley (1976). Clearly,

for preferred pairs of pelynomials, which generate m-sequences u and v,
the peak parameter emax(u,v) defined in (1.8) equals

L(+2)/2} 1

Gmax(u,v) = 2

For example, the first six polynomials in Table 4 form a maximal

connected set S of six m-sequences of the same length p = 127 for which

Lee+2) /2] _

8 = max{emx(u,v) :u€g, vé€s} =1 +2 17 .

Other m-sequences of length p = 127, not maximal connected, can form
pairs with correlation peak values as high as Gmax(u,v) = 41. The size
of a maximal comnected set of m-sequences is rather small. In fact
all sets have a cardinality less or equal to six for p S 4095 while in
some cases, such as for n = 0 mod 4, the cardinality is zero.

In a first analytical result, Gold (1967) egtablished a bound

u 48 a funct v.
on emaX( V) u function of u and

Theoxem 2: Let fl(x) be a priuitive polynomial of degree n and let B
be a root of fl(x) in GF(Z“). 1f ft(x) is the minimal polynomial of Bt
5 Wn+2)/2]

where t = + 1, then Smax(u,v) S t for the sequences generated
by El(x) and ft(x)-
Notice that ft(x) does not have to be primitive. Theorem 2 is

a special case of more general results obtained by Kasami (1966) for a
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large number of values t = 2h + 1. One such a result is

Theorem 3: Let fl(x) as in Theorem 2 and ft(x) is the minimal polynomial

of ft(x) where t = 2h +1and 0 <h <n., Let ¢ denote the greatest

common divisor of the integers n and h. If n/c is odd then eu v('r) = =1

n 2(n+c)/2 ’

for 2% -277%.1 values of T, 8, v(T) =-1- for
H

n--c--l_2 (n=c-2)/2 L+ 2(n-hc)/Z £o n-c-1

values of r and Gu’v(f) = - r2
values of T.
A more complete discussion is given by Pursley (1976). The

results of Gold and Kasami form a basis for the comstruction of large sets

- of sequences with good periodic correlation properties and are discussed

in Chapter 5.

3.6. Aperiodic correlation functions

From the analysis of the direct sequence SSMA system as pre-
sented in Chapter 1, it is clear that the odd cross-correlation function
éu’v(l), as defined in (1.6) is as important as eu’v(z). As shown in
sactions 3.4 and 3.5, eu’v(Z) displays certain regularities as a function
of £ and the polynomials f(x) which generate u and v. The odd cross-
correlation éu’v(t), however, seems to be refrained from any such
regularities -- and must be computed for each £ -- hence the peak param-
eter anéu,v),as parameter émax(u)’ is very sensitive to the cyclic shifts
of the sequences u and v.

Whenever the phase shifts of the sequences are already fixed due
to other requirements such as a low value of the autocorrelation parameter

-~

emax(u)’ the cross-correlation parameters can readily be computed.
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For example, in Table 9 the parameters emax(u), Smax(u,v) and
@max(u,v) are tabulated on, below and above the diagonal respectively, for
the auto-optimal m-sequences of length p = 127. These sequences are
indicated by the polynomials f£(x) which generate them. The symmetries in

oty = A 1t
the table are due to the fact that émax(u ') =8 (u,v)and 6 (u',v')
= Gmax(u,v) whenever u' and v' are reciprocals of u and v respectively
k . ~
(see Section 3.3). Whenever v =T u, Gmax(u,v) = Gmax(u,v) = p. Hence,
thogse values are omitted from the table. Notice also that for the maximal

counected set S formed by the first six m-sequences in Table 9,

8c = max{émax(u,v) t:u€8,veEst=33.

The interference parameter r(u,v) as defined in (1.20) for the
auto-optimal m-sequences of length p = 127 is tabulated in Table 10.
The auto-optimal m-sequences in Table 10 are, as in Table 9, indicated
by the polynomials f(x) which generate them. Only one-fourth of the
interference parameter values are tabulated because r(u,v) = r(u,v') when-
ever v and v' are reciprocal sequences. Notice the higher interference
between an m-sequence and itself or its reciprocal. This is a good
argument, not to use an m-sequence and its reciprocal in the same set of
signature sequences.

It is not gsurprising that m-sequences, which have many charac-
teristics in common with random binary sequences, yield values of r(u,v)
which are close to Er(u,v) = sz as in (2.12). 1In fact, all values
of r(u,v) in Table 10 -- the values on the disgonal excluded -- are within

the range [Er(u,v) * . var(r(u,v))] for random binary sequences.
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i. Table'9. Correlation values in the auto-optimal set of m-sequences; p = 127.

T N A R R

£

H

L 2 2 2 2 233 2232323331313 73:2

P 113 4 75 20022 67 476 1005

§ l 176 7757 333511 15573113
s b a b

211 17 33 31 27 27 31 39 27 35 25 37 45 33 47 33 35 29 37 29 27
217 17 15 31 31 27 29 31 37 35 31 45 35 23 37 33 29 29 31 43 29
235 17 17 17 27 31 29 29 35 27 29 33 23 37 29 33 27 31 33 33 31
247 17 17 17 17 31 29 33 29 31 33 47 37 29 35 33 29 2% 23 25 53
; 277 17 17 17 17 19 27 33 33 25 39 33 33 33 33 37 31 29 29 29 35
Ea 357 17 17 17 17 17 17 31 39 29 27 35 29 27 29 31 41 31 31 25 35
. 323 17 17 41 17 17 17 17 41 31 41 29 29 31 29 29 31 37 27 27 27
203a 17 17 41 17 17 41 17 17 37 37 31 33 23 29 31 27 37 25 25
203b 17 17 41 17 17 41 17 17 35 29 43 33 25 29 25 27 25 43 33
325 17 17 17 17 41 17 41 41 41 19 27 29 31 53 35 35 27 25 33 37
221 21 41 41 41 41 41 41 17 17 17 17 33 31 27 27 31 39 27 35 25
361 41 21 17 41 41 41 471 41 41 17 17 15 31 31 27 29 31 37 35 31
271 41 17 21 41 17 81 17 17 17 41 17 17 17 27 31 29 29 35 27 29
345 41 41 41 21 41 41 17 17 17 41 17 17 17 17 31 29 33 29 31 33
375 41 41 17 41 21 17 41 41 41 17 17 17 17 17 19 27 33 33 25 39
367 41 41 41 41 17 21 17 17 17 41 17 17 17 17 17 17 31 39 29 27
313 41 41 17 17 41 17 21 41 41 17 17 17 41 17 17 17 17 41 31 411
301a 17 41 17 17 41 17 41 21 21 17 17 17 41 17 17 41 17 17 37
301b 17 41 17 17 41 17 41 21 21 17 17 17 41 17 17 41 17 17 35
253 17 17 41 41 17 41 17 17 17 21 17 17 17 17 41 17 41 41 41 19

Table 10. Interference parameter r(u,v) for the auto-optimal
set of m-sequences of length p = 127.

211 217 235 247 277 35T 323 203a 203b 325
211 41214 33622 32722 32022 29070 34394 32978 31486 33114 30250

217 40222 30954 31406 31446 29554 32666 34118 35186 32066
235 42046 32570 33714 32974 32246 33106 30766 33310
247 40326 34054 32002 29546 30486 34194 33634
277 41294 31146 31938 33934 31290 34202
357 41958 31258 30806 30626 30770
323 39870 33538 32670 33598
203a 39902 29698 32442
. 203b 42358 33830
325 42894

- N . e s e m——— s s e e o B - —-— -
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In Appendix C, the correlation parameters @max(u), B gy (8sV)
and @max(u,v), ag well as interference parameter r(u,v) are given for
the AO/LSE m-sequences (see Definition 2) of length p = 31, 63, 127 and
255.

Whenever it is possible to relax the autocorrelation require-
ments, one might try to minimize the cross-correlation parameter amax(u,V).
Even for small sets of -=quences, however, the amount of computation
required to find the cyclic shifts which, for example, minimize §c
becomes rapidly prohibitive. A discussion about the computational com-
plexity of the correlation problem is given by Pursley and Sarwate (1976).
Sywyk (1975) obtained some results for auto-optimal m-sequences of length
p = 63. A sub-optimal result for the above mentioned wms—-imal connected
set S of gix m-sequences of length p = 127 is reported in Tabie 11. With
the indicated binary loading, one obtains éc = 29 compared with éc = 33
for the auto-optimal loading. Nctice, however, that éa has increased
from a previous low value of éa =~ 19 (sea Table 4) to éa = 23, The
resulting values of r(u,v) are also given in Table 11.

Finally, to obtain an indication of how small éc could be, a
triple of polynomials (211,217,235) was selected from the maximal connected

~

get S. We established that a lowest value 6c = 23 {8 achieved for two

-

sets of register loadings, here reported in Table 12. Notice that Ga = 29

and éc = 21 respectively.

P A A
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Table 11. Maximal connected set of m-sequences for which @c = 29

and interference parameters r(u,v) for this set.

§ Poly. Loadingt émax(u)

e 217 235 247 271 357
21 1101010 19
217 1101111 22 211 32770 28998 33202 32870 32290
235 1101000 19 217 32810 33014 33050 32038
247 1111111 23 235 30298 31550 32730
277 0111111 23 247 32458 33350
357 0101110 23 277 33482

f Table 12. Optimal triples of m-sequences { 211, 217, 235} with éc =23
-
k. : and interference parameters r{u,v) for these triples.
‘,-!.- E3 ,‘;":

E . Poly. Loading* gmax(u)

- ' 217 235

211 0100000 21

=t . 217 1010011 29 211 30494 287343

3 235 1111101 23 217 33362
i 217 235
3 21 0100000 21
E: R 217 0010007 . 19 211 29714 28790
= 3 235 1110111 19 217 jauu2
MR
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CHAPTER &

ON THE MOMENTS OF THE APERIODIC CORRELATION FUNCTIONS

While the relationship between the periodic correlation parameters of
m-sequences and the polynomials f£(x) is rather well-understood (see Chapter
3), it is less clear how those polynomials relate to the aperiodic correla-
tion parameters, In this chapter we report our work on one particular
relationship which had the potential of being a possible sieve for m-

sequences with good aperiodic correlation parameters,

4,1, Third moment problem

Qur investigations were inspired by the work of Lindholm (1968) who
was interested in the weight distribution of M-tuples of long m-sequences.
He actually established a relatiomship between the polynomial £(x) which
generates the m-sequence and the woments of the M-tuple weight distribu-
tion. Related results were obtained by Wainberg and Wolf (1970) who
derived the first six moments o5f the M~-tuple weight distribution while
Weathers, et al,, (1974) obtained expressions for hybrid m-sequences.

In this chapter we consider the first few moments of the aperiodic
correlation runction values when thc correlated m-sequeunces have an at
random selected cyclic phase shift, In particular, we obtain the first
few moments of the odd correlation functiun values, For a number of
m-sequences, the moments were evaluated, and compared with actual data

acquired from those m-sequences,
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4,2, Moments of the aperiodic correlation functions

Let & = Tu and ¥ = TVv be two cyclic shifts of m-sequences u and v
respectively, When we assume x and y to be uniformly distributed over the
integer values in the range [0,p-1], the moments of the aperiodic auto=
correlation function CE(Z) and the aperiodic cross-correlation function
Cﬁ’§(£) can be calculated in a relatively straightforward manner, as is
shown in Appendix D.

In Appendix D it is also shown that the mathematical expectation of the

interference parameter r(u,v) equals,
w2 -1
E{r@@,9)} =20 -1 +p ) (4.1)

which is practically equal to the mathematical expectation of E{r(u,v)}
for random sequences as derived in Sectisn 2,3, Furthermore, the results
in Appendix D enable us to derive in Section 4.3, the first three central

moment3 of the odd correlation functions éa ;(z) and éa(z).
»

4,3, Moments of the odd correlation functions

With the odd cross=-correlation function

8.

u’g(i) - Ca,;(l‘P) - 05,;(£), 0=t <p-l (4.2)
one obtains with (D3),

" -2
E[GE'G(Z)} =p (22-p) . (4.3)
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Similarly with (D4),
E(6 ) = 9T 20, 440 (6.4)

; ' The variance of 63’;(5) follows from (D5) and (D9)
var{f o (1)) = s(8Z L} - Ez{éa’;(_z)}
= pl1+07 [(p-20)%-p] +1™ (p-24)) (4.5)
while with (D6)and (D10) one obtains

var(8. (1)} = btp 2+ 1) (p-0), 4 #0 . (4.6)

The third central moment of éﬁ ;(L) is denoted as
i - A N A 3
| Ay 5 = E{18g ) - El6g 5017
With (4.3) and (4.5) this reduces to

-3
xaﬁu) = E{GG&(L)} + §(4)
where

: @) = p (@t 2-3p%) - 3’ (p7-1) (24-p)] &.7)
and, after substitution of (Dl3) and (D17),

E{éé’—;’(i)} = p2{ (2-3p) (p~24) +6<§>2~ 6(";‘)2 +;23— 2% (p-0)% (p-2) (p-24))
rop (Dt + 01+ ) 85 01+ 62]
s (De-ndw+ew - (FHec @0+ 0] +

+ 6p72 (+1)2 (85 ()8} (8) + €} (p-£)C] (p-1)

.2

- C3{ICy(4) - By(p-0)B(p-8)]
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For the third central moment of éﬁ(z) one obtains with (D14),

(D19), (4.4) and (4.6),

3
HOR Eiéa(ﬂ)} + 8(4)
where
§(4) = p7>(p=24) [44 (4-3) (2 +3p) - p°l .9)
and

e§2) = 8elc (e-p)} +12{cE (-p)} + 6mlC, (4-p)) + 1

= 20p " {3(2p+1) - 24 (3424)) + 1 + 48p” L (p+1IBI () (4.10)
Hence,
Ag @) = 8477 (pH1) [3p-£ (42)] + 48071 (P+LIBY(S) - @.11)

B§<z) represents the number of trinomials (see Chapter 3) of
degree up to but not including 4, which are divisible by the primitive
polynomial £(x) which generates m-sequence j (or u).

Cg(z) represents the number of trinomials of degree 4 and higher,
with the exponent of the intermediate term smaller than or equal to 4-1,
which are divisible by tlhie primitive polynomial £(x)} which generates
m~sequunce L (or u),

It i{s snown in Appendix D that

u u v v 4
iy + 33y = <Yy + 3y = (2). 4.12)

To find Bg(L) -- and thus cg(z) -- one can use Lindholm's equality

'6‘3’(1)
3‘3‘(1.) =z§‘3‘<z> - ¢ d

. 46.13)
[
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. d ¢
Here Bg(E) equals the number of trinomials of the form x J + X J +1,

with 1 < cj < dj < L-1, which are divisible by f£(x).
Notice that (4.8) and (4.10) imply
xﬁ,g(z) = - Xﬁ’g(p-z) 4.14)

and
Kﬁ(Z) = - kﬁ(p~2) 4.15)

which reduces the number of computations for each parameter with a factor
of 1/2. Furthermore, for any m-sequence y of length p = Zn-l generated

d ¢
by polynomial f(x) of degree n, there does not exist a trinomial x i + x 3

+ 1 with dj < n, which is divisible by £(x). Hence, for £ <n

Bg‘(z) = cg(z) =0, Vu. (4.16)

4.4, Third moment evaluation for m-sequences of length p = 31 and p = 63

In this section the third central moments of the odd cross-
correlation and autocorrelation functions as discussed in Section 4.3 are
evaluated for the m-sequences of length p = 31 and p = 63. As an example,

the values of Bg(l) and Cg(i) for the m-sequences generated by

£ () = © o+ x5+ 1 (045), £, (x) = X +x* + 50 +x% + 1 (075) and

fs(x) = xs + x4 + xz + x + 1 (067) respectively, are given in Table 13.
Reciprocal polynomjials give the same values for B;(z) (and thus for

u

C3(z)).

To demonstrate this Table 13, consider B;(ll) and C;(ll) for

the m-sequence u generated by fl(x) = xs + xz + 1. The trinomials of

d; 2 19

c -
the form x Iy x 3 + 1 contributing to B;(ll) are xs + x +1and x 7 +

<+, dee., 5‘3‘(11) = 2. ' nce, n‘;(u) e 7 and with (4.12) one obtains

Ry
B
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Table 13. Bg(z) and Cg(l) for m-sequences of length p = 31.

fl(x) = x5+x2+1 f3(x) = x5+x4¢x3+x2+1 fs(x) = x5+x4+x2+x +1

E' fls(x) =z x5+x3+1 f7(x) =z x5+x3+x2+x +1 f‘ll(x) z x5+x4+x3+x +1
u u u u u u

4 B3(l:) C3(Z) 4 33(2) C3(¢) L 33(2) C3(l)

1 0 0 1 0 0 1 0 0]
{ 2 0 1 2 0 1 2 0 1
L. 3 0 3 3 0 3 3 0 3
4 0 6 4 0 6 4 0 6
5 0 10 5 0 10 5 0 10
; 6 1 12 6 0 15 6 0 15
: 7 2 15 7 0 21 7 0 21
8 3 19 8 0 28 8 1 25
9 b 24 9 1 33 9 2 30
10 5 30 10 3 36 10 3 36
11 7 34 11 5 4Q 11 b 43
5 12 9 39 12 1 U5 12 6 48
13 11 i5 13 10 48 13 8 54
14 13 52 14 13 52 14 1 58
15 16 57 15 16 57 15 15 60
16 19 63 16 19 63 16 20 60
17 23 67 17 23 67 17 25 61
18 27 T2 18 28 69 18 30 63
19 32 175 19 3% 69 19 35 66
20 38 76 20 40 70 20 S| 67
21 4 75 21 47 69 21 47 €9
22 52 75 22 55 66 22 54 69
23 60 73 23 63 64 23 62 67
24 69 69 24 T1 63 24 71 63
25 79 63 25 80 60 25 80 60
26 90 55 26 90 55 26 90 &5
27T 101 48 27 101 48 27 101 48
28 113 39 28 113 39 28 113 39
29 126 28 29 12t 28 29 126 28
30 140 15 30 14¢ 15 30 140 15
31 155 0 31 155 0 31 155 0
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d, [
Cg(ll) = 34, The trinomials of the form x 7 + x J + 1 and their

respective contributions to Cg(ll) are tabulated below,

Trinomial Contribution

xs + xz +1 3

xlo + x4 +1 6

x16 + xg +1 2

x18 +x +1 10

x20 + x8 + 1 3

x22 + x7 +1 4

x27 + x6 + 1 4

ng + x3 +1 2
Total: 34 .

The parameters xﬁ(z) and kﬁ v(z) for m-sequences of length p = 31
3
are sketched in Figure 4 and Figure 5 respectively. The same parameters

for m-sequences of length p = 63 are sketched in Figure 6 and Figure 7.

4.5, Discussion of Xaﬁﬁ) and XG’;ng

It is clear from the results in the previous section that the
mean and the variance of the odd correlation function values do not
depend on the particular m-sequences selected. The third central moments
XG(E) and xa,v(z), however, clearly do depend on the polynomials £(x) as
specified by the expressions in Section 4.3, While Aﬁ(z) and xi’g(z>, Yi,
are equal to zero for random binary sequences (see Sectiom 2.3), for the
m-sequences they vary widely when L takes on values in its range. Recall

that a third central moment provides a measure of skewness being positive,

zero or negative as the distribution has a long positive tail, is
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symmetrical or has a long negative tail, Hence, the various sets
Ay = {xﬁ(z); 4 =1,2,...,p~1}

and A == {As ~(8); 4 =0,1,...,p-1}

q,v q,v
for different m-sequences and m-sequence pairs respectively could be
potentially useful as sieves for sequences with goocd correlation properties.
For example, let u' = Tx'u with x' chosen at random from the integer values
in [0, p~1]. The set of values {éu.(l); £ =1,2,...,p~1} for m-sequence
u' can be modelled as a realization of the set of random variables
{éﬁ(z); £ =1,2,...,p-1}. Hence one could expect some correlation between
parameters such as 8max(u') or mi? émax(u') and ka.

On the other hand, this correlation might not be high enocugh
to show up in the above mentioned parameters when the actual m-sequences,
selected with XG as sieve, are compared, Furthermore, if such a correlation
exists, it is not yet clear which measure on the values in XE and kﬁ,%
should be chosen to use as the actual sieve.

One measure might be the presence of a certain number of high
positive or negative peaks in Aﬁ or XG 5

Another measure might be the Euclidean norm Hka V“ of the vector
) ?
O\-&.;’(O) » )\'ﬁ"“l(l)) AR x)"ﬁ""‘,(p’l)); i.e.,

p-1
£ A2

I z %.17)

g gl = ¢

The norm Hlﬁ“ is defined {n a similar way, with £ ¥ 0. An iasert in the
Figures 4 through 7 gives the Euclidean norms for the indicated

m-sequences.
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A problem with both measures, and presumably will all, is
the dominating and equalizing presence of the high peaks in lﬁ and

Aﬁ 5 for L < n, which doc not depend on f(x).
3

4.,6. Actual data for m-sequences of length p = 31 and p = 63

In this section we present some actual data obtained for the
m-sequences used in Section 4.4, Additional data can be found in
Sywyk's work (1275).

Let Fa denote the number of times a certain value of amax(u')
occurs when x' in u' = Tx'u takes on the values 0,1,...,p~l. Similarly,
Fc denotes the number of times a certain value of gmax(u’,v') occurs
when x' and y' in u' = Tx'u and v' = Ty'v respectively, both take on the
values 0,1,...,p-1. Fa and Fc are tabulated in Table 14 for a number of
m~sequences with the pelynomials £(x) in octal notationm.

While a larger unumber of positive or negative peaks in
kﬁ Lor AG,V) or a higher value of “kaﬂ {or HAG’;“) might indeed have
some positive correlation with a larger number of high values of
émax(u') (or émax(u"v'))’ the effect as a whole seems rather weak.
Actually, the data shows that the m-sequences do behave rather much alike.
Other results, collected while obtaining auto-optimal Gold sequences and
Kasami sequences (see Chapter 5) do not give more conclusive infor-
mation.

Hence, we concluds that AG and RG,G’ while interesting on their
own merits, are less useful as sieves for the selection of m-sequences
with good correlation parameters such as a low vorst-case value of

P -

L} ] 13
Gmax(u } er amax(u ,vh).
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ba Table 14. Fa and Fc for some m-sequences of length p = 31 and p = 63.
Ei
p=3N
Poly. émx(u') : 7 9 11 13
045 (051) Fa: 4 18 9
075 (027) Fa: 9 13 8 1
067 (073) Fa: U4 16 9
' Lo
I8 Pcly. pairs emax(u',v‘ 7 9 11 13 15 17T 19 2
(0u45,057) Fc: 0 53 339 333 156 56 20 4
§ {0u5,073) Fc: 1 60 321 342 166 53 14 y
T (057,073) Fc: O 39 324 336 176 66 18 2
; (045,051) Fc : 10 188 336 216 1 67 21 2
p =63
Poly. émx(u'): 11 13 15 17 19 21
103 (141) Fa : 8 7 22 16 9 1
. W7 (163) Fa: 9 17 28 112 0
i a2 133 (155) Fa: §$ 22 18 12 2 0




60

CHAPTER 5

CORRELATION PARAMETERS FOR SUMS OF PAIRS OF M-SEQUENCES

In the previous chapters the discusgsion has been limited to
m~sequences because thosz sequences have excellant periodic auto-
correlation properties. Sets of m-sequences with good periodic cross-
correlation properties, however, have a small cardinality (see Section
3.5). 1In this chapter we will expand our discussion to larger sets of

potentially good signature sequences due to Gold (1967) and Kasami (1966).

5.1. Gold sequences

Theorem 2 in section 3.5 yields a pair of m-sequences of common
period p = 2™ -1 for which the pairwise cross-correlation is bounded by
[4
ZL‘n+2)/2J + 1. Here n # 0 mod 4 otherwise ft(x) is not primitive.
In fact, the greatest common divisor of p and t in Theorem 2 is
1 n# 0 mod 4

gecd(p,t) = (5.1)
3 n=0md &

ag was pointed out by Sarwate (1976).

Above result is contained in the stronger and more general
Theorem 3 which yields preferred pairs of primitive polynom:als for
noddand ¢ 1 orn=2mod 4 and ¢ =2 but not for n = 0 wed 4. More
preferred polynomial pairs can be found when t = Zh + 1 in Theorew 3 is

2h Zh + 1, as reported by Golomb (1968). Furthermore, the

replaced by 2
number of polynomials for which this theorem holds can be doubled with a

prornsition in Pursley (1976). This proposition states that polynomial

pairs (fl(x), ft(x)) and (fl(x), fq(x)) generate m-sequence pairs with
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gimilar cross-correlation values whenever
i n <
qt =2 mod(2 ~1), for some i, 0=1 < n-1. (5.2)

Analytical results such as above, as well as experimental
results such as discussed in section 3.4 yield m-sequence pairs (u,v)

L(n+2)/2) +1

such that emax(u’v) = 2 . Furthermore, it enabled Gold (1967)

and Kasami (1966) to formulate the following important result.

Theorem 4: L2t fl(x) and ft(x) be a preferred pair of polynomials of
degree n whereby n # 0 mod 4. The shift register with the product

fl(x) ft(x) as its characteristic polynomial will generate a set of 2" +1
éistinct sequences of period p = 2 -1 Any pair of sequences in thig

L(n+2) /2]

set has a cross-correlation function bounded by 2 + 1, and any

sequence in the set has an autocorrelation function whose out-of-phase

Len+2)/2) +1

values are also bounded by 2
These sequences and all their cyclic ghifts are usually referred

tn as Gold sequences. The set of distinct sequences in Theorem 4

consists of characteristic m-sequences p and v generated by fl(x) and

ft(x) respectively and sequences of the type w = \ & Tkv, k=0,1,..., p~1,

whereby the addition is modulo 2. Hence, the Gold sequences can also be

generated by two shift registers with characteristic polynomials fl(x)

and ft(x) respectively and one modulo 2 adder (see Dixon (1976)).

Clearly the perfiodic cross-correlation function batween u-

sequences i and v in the set of Gold sequences is three-valued

because El(x) and ft(x) are a preferred pair. The periodic crosi-correlation

k
of m-sequence ¥ and sequence w = ¥ + T v can be regarded as a special case

Vo G e st A OO -
o .

R




of the pefiodic cross-correlation function ew z(Z) of the sequences
H]

. ¢
W=y + T and { = p + T, with w = (1% and 2, = - 193, 1.e.,

5 N w = u~Tkv and z = u-va, which i{s discussed in the next sectiom.

5.2. Periodic correlation functions of sums of m-sequences

Let dH (w,0) denote the Hamming distance between any two
sequences w and {, both of length p, and let WH(w) denote the Hamming
weight of sequence w. As before we assume the m-sequences u (or u) and

o v (ur v) to be in their characteristic form. Then
0.8 = P - 24 ;@70
£
=p - ZWH(uH-T o)

=p-2W_ Ty + T + Ty

Therefore
(»p 1f  4=0mod p, m =k
-1 if £=0mod p, m ¥ k
8, &) = ﬁ (5.3)
? -1 1f 44m-k=0 mod p, m # k
~ -r (4
L?u’v(k+s(£) r(4)) , otherwise
whereby

SN ST |

SR MR ] (5.6)

and 0 the all-zero sequence. As a special case ome obtains, with u #w,

-1 y £=0 mad p
eu’w(z) = (5.5

Qu’v(kﬁ-r(z)) , otherwise .
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The choice of i and v characteristic in w and { is not essential for
equations (5.3) and (5.5) and would merely constitutes a change in shift

4 because

ea’;(_z) = eu’v(z +y -x mod p), V4 (5.6)

where @ = T'u and ¥ = T% .
Given a value of .-k, the trinomial equatioms in (5.4)

yA
(see Section 3.2) specify for each £ the binary trinomials xr( ) + xZ +1

and xs(z) + x“hm-k

+ 1 which should be divisible by fl(x) and ft(x)
regpactively.

For £ = 1,2,...., p~1, the factor £ - r({) in equation (5.5)
takes on all the values in its range and £ # r(£). This implies, among
others, that Bu’w(Z) in (5.5) will again be a three valued cross-
correlation function when u and v are preferred m-sequences.

The factor s(£)-r(f) in equation (5.3), however, will take on
specific values in [0,p-1]. Those values will depend on m-k as well
as the trinomial structure of the m-sequences involved. With the
difference s(L)-r(2) determined for all £, eu,v(k-+s(z)-r(2)) still i{s a
function of k.

In the special case that m=k, equations (5.4) imply that -

(L) -r () Gﬂy if z‘Eﬂi for some i and y. Theu {f one adds a value k Eﬂx
to s(2) - r(4), th: resulting sum k + s(2) -r(i)fiﬂxﬂy, the Gauss' product’
of cyclotomic cosets Ex and ﬂ? as defined in (3.17).

Adbove facts explain why certain choices of ¥ in the.sequence

wey o+ Tkv <an vield @ peak parameter Gmax(w) < Qmax(u.v} ard certaian

(k;m) in sequence pair (w=y + Ekv, £=y+ TmV) can yield a peak parameter

z £ M Stz F
eﬂax(w,u) < Bmax(u.v). Hera Gmax\u,v, is assumed to be obtained from the
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tables of Gold and Kopitzke (1965), Golomb's theorem (1968) or Kasami's
results (1966). Of course, other correlation parameters will depend on
(k,m) too.

From the results such as above, we can formulate;

Theorem 5: Let fl(x) and ft(x) generate the set & of distinct Gold
sequences ¥, v and w = y + Tku, k=0,1,..., p~1 as in Theorem 4. Any
m-sequence in 4 has a three-valued cross-correlation function with any
other sequence in &. A sequence pair of the type (W = p + Tkv, C=u+ va)
will have, as a function of (k,m), a three~valued or in some cases a two-
valued cross-correlation function. Furthermore any sequence ia & of the
type w = U + Tkv will have, as a function of k, an autocorrelation

function with out-of-phase values {—1,-1 + 2L(n+2)/2J} or in socme cases
{-1,-1 + 2L(n+2)/2J}.

It should be noted that equation (5.3) is not restricted to pre-
ferred pairs of polynomials. Hence, our investigation -- in the next

sections -- not only includes Gold sequences but many other sequences of the

type w = ¥ + Tku. Furthermore, we will study in Section 5.5 the special case

2
¢ =2™2 . 1, n even, i.e., polynomial £, (x) is not primitive. The next

-

section illustrates our approach with an example for sequence length n = 13.

5.3. Example for m-sequences of length p = 15

Let 4 and v be the two m-sequences of length p = 15 generated
by polyanomials fl(x) = xh +x + 1 and E7(x) = xA + xj + 1 respectively.

As was showm in Section 3.4




65

-1 if 4E€7)
-5 if L€M,
eu’v(z) = -J 3 if LEN, (5.7)
7 if L€
-1 if z€ﬂ7 .

a v) =7,
Hence, max(u’ ) =7

Case 1l: m=k

With U generated by fl(x) = x4 + x + 1 one immediately obtains
T"u. + Tw +u =0 as a (trivial) first trinomial satisfying (5.4). The
other trinomials of the form specified by (5.4) are tabulated in Table 15
for the polynomials fl(x) as well as f7 (x). Observe from this table
that s(4) - r(4) mod 15 ET]O, “1 and 'ﬂs. Let kEﬂ.,. Then the sum
k+s(L) -r(4) mod 15 ETIO n.,, ﬂlﬂ., and ﬂsﬂ_’. This implies, with Table 5,
that &k + s(£) -r(£) mod 15 Gﬂs , Y2, and therefore Gw(-!) = eu,v(k +s5(2)-t(4))
# Gu,v(ﬂs) = Gmx(u,v) = 7. Hence, Gmax(w) = 5 for kE""I7 while Gmax(w) = 7

for k ETL,-
Case 2: m#k

Let Gx denote a series of values,

6x = (x-29 @od p) , § =0,1,..., n-1 (5.8)

and let

G(x,y) = ((x-23 wod p, y-23 mod p)) , J = 0,1,...,n-1 (5.9)
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Table 15. Trinomial structure of m-sequences of length p = 15.

Case 1: m = k

£: 1 23 456 7 8 91011121314 0
(023) r(4): 4 814 11013 9 2 7 51211 6 3 ==
(031) s(4): 12 9 4 310 813 6 2 514 1 711 ==
s(4)-r(£): 8 1 5 2 010 4 410 0 2 5 1 8 ==
| Tes(8)-r(4): 0 812 9 7 21111 2 7 912 8 0 ==
;‘ Case 2: m = k + 1
o 4: 123456 7 8 91011121314 0
(023) r(4): 4 814 11013 9 2 7 51211 6 3 ==
' (031) s(£): 9 4 310 813 6 2 514 1 7 11 == 12

s(£)-r(£): 511 4 91313 012 013 9 411 5

It
"
3}
"

( == denotes the exceptional cases in equation (5.3) )

Table 16. Sequence pairs (w,z) for which émax(v’z) <7

W = u-Tkv , 2 = u-va; p = 15,

a-k k (k,m)
& G2, G3, G4, G(2,3), G(3,4), G(4,5),
43 Go, G2, G7, G(0,3), G(2,5), G(7,10),

G5 G2 G(2,T)
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denote a series of pairs. This notation can simply be extended to triples
G(x,y,z) etc.

Consider m=k +1, Table 15 indicates the resulting trinomials
of the form specified in (5.4) and the resulting values of s(£) -r(4) mod 15.
Observe that k + s(£) ~r(£) mod 15 E'ﬂs whenever k = 2, 3 or 4, Again
let (k,m) indicate the sequence pair (w = u + Tkv, C=u+ va), then
ew,z(z) = eu,v(k-ks(z) -r(4)) # Gmax(u,v) = 7 for the sequence pair
(k,m) = (2,3), (3,4) and (4,5). In fact one finds that a series of values
m-k = Gl implies a series of values k=G2, G3, and G4 or, alternatively,
a series of sequence pairs (k,m) = G(2,3), G(3,4) and G(4,5) for which
emax(w,z) # 7 (in fact S 5). Table 16 shows the results for m-k = Gx,
x=1, 3 and 5.

Examination of Table 16 reveals four triples (k ) where

11°K42°K49

k., indicates sequence wi =4+ Tkiju, for which the pairwise peak

ij i
magnitude of the periodic cross-correlation function equals 5 instead of 7.
Those triples are G(1,53,11).

In the next section results for sequences of longer length will

be discussed.

5.4. Sums of pairs of m-sequences up to length p = 255

The trinomial structure of the m-sequences p and v and {ts
relation with the periodic autocorrelation and cross-correlation functions
of w=u + Tkv, k€0, p-1] has been investigated for sequance lengths
up to p = 255. The autocorrelation properties are the least attractive
aspects of the sequences w if compared with m-sequences. Hence, those

aspects received most of our attention. In mauy cases the AO/LSE phase
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shifts W of sequences w were determined and the cross-correlation values

of interesting subsets have been computed.

5.4.1. Sequence length p = 31

The trinomials for the m-sequences of length p = 31 are specified
in Table 17 and are easily obtained from each other with the decimation
property (3.7) of m-sequences.

Except in the case that the sequences are generated by reciprocal
polynomials, the m-sequences i and v will be preferred pairs, i.e.,

Ls+2)/2) _

Gmax(u,v) = 1+2 9. With the Gauss' products of cyclotomic

cosets of integers modulo 31 as specified by Golomb (1968) one obtains
L5 +2)/2)

here emax(w) =2 -1 = 7 for exactly ore value of k namely
u:eno =0 orw=y+v (and all cyclic shifts of w). Table 18 gives the
results for the periodic cross-correlation parameter Qmax(w,z). The
asterisk indicates that Bw,z(l) will be a two-valued function for indicated
values of (k,m).

A complete set of periodic autocorrelation parameters qmax(w),
La and M(w) for all values of kaﬂx is shown in 7.%le 19. The decimation
property (3.7) and proposition (5.2) imply here that‘pairs of columns of
k-values in this table can be obtained from each other by simple trams-
formations of cosets ﬂx~

As was the case for m-sequences, peak parameter §max(w) will
again depend on the cyclic shift of sequence w. Furthermore, recall
that M(w) + ﬁ(w) = 45(w), Yw. Here M(w) is constant over kiiﬂx, some x.

Hence, the sidelobe energy can be used as a sieve for low values of ﬁ(q)

as long as kiEﬂx. some X, and Definition 2 (Section 3.3) can simply be
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‘Table 17.

(045)
(075)
(067)
(057)
(073)
(051)

Table

ous5
045
045
045

045

18.

075
067
¢s51
057
073

Table

£ : 1 2 3 45 6 7 8 91011

r(4) : 18 529 10 227 22 20 16 4 19
r(4) : 20 926 18 82129 5 2 16 12
r{(4) : 19 7 11 14 29 22 228 15 27 3
r(4) : 1224 8172816 9 3 725 30

r(4) : 13 26 23 21

715 51125 14 8

r(f) : 14 28 525 31016 19 24 6 23

Good Gmax(w) or Qmax(w,z) W=

aq

19.

gmax(w) la H(w)

[V=2AVe VIV Ve Ve Bl |

(o 2e Wo W+ N ~J N R o)

510
766
830
798
1066
1054
1310

Bmx(u,V) 8 ax (w)

u-Tkv, z
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Trinomial structure of m-sequences of length p = 31.

12 13 14 15 ..

.

23 14 13 24 ...
11 17 27 25 ...
1312 & 9 ...

127 18 21 ...
30 110 6 ...
20 30 1 22 ...

= u-va; p = 31.

k GT\X([x]) ' Gmx(w,z) (kym)

(0]
(o]
(o]
(o]
(el

(e G( 5,10)

9 all
7 G( 1, 2)
9 all

T8 G( 1, 2)

Periodic autocorrelation functions for w = u-I’kv

with kénx([ﬁ); p = 31,

u: OS5 045 Q45
v: 075 073 067

k k k
(o] (0] (o]
(51 (11 (7]

(11} (s {11]
(151 (3] (1]
(7] (sl (5]
(v (11 (3}
(3] (1] (3]

o4s
057

k

{o]
{15}
(rn
(n)
(3]
(1]
(5]

Ve

La M(w)

590
654 (
878
1134
958
1054 [
1150

PN E EO

045
051

{0}
11}
(7]
(5]
[31
153

(1]
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extended to sums of pairs of m-sequences as well.

For the m-sequences u and v generated by fl(x) = 045 and f3(x)
= 075 respectively, Table 44 in Appendix E gives for each value of k the
cyclic shift y for which W = Ty(u-Tkv) is an AO/LSE sequence. As an
alternative specification of W, the table also gives the AO/LSE (octal)
loading of the shift register with characteristic polynomial fl(x)f3(x).
Tables 45 and 46 give similar results for the polynomial pairs (fl(x),
fs(x)) and (fS(x)’ f3(x)) respectively. Notice that in each table, for each
value of k, the AO/LSE cyclic shift y yields @max(w)IS Gmax(w)!

A good choice for a subset of the AO/LSE sequences W in Table 44
is the set specified by {W:k G'ﬁo,'ﬂs}, supplemented with the AO/LSE
m-sequences U and V. In Table 47, the peak parameters §max(v), @max(w,z)
and emax(w,z) for this subset are tabulated. As predicted by Table 18,
the periodic cross-correlation parameter emax(w,z) equals 7 instead of 9
for a number of sequence pairs (w,z). The interference parameter r(w,z)
for this subset is tabulated in Table 48.

Finally we point out that the data in the Tables 44 through 46
can be related -- via equation (5.3) -- to the various cases in
Figure 5 (Sectiom 4.4). No specific correlation, however, could be

established between, say, norm HXC ~ sad occurrences of émax(")’

5.4.2. Sequence length p = vl

As in Section 5.4.1, one obtains with the trinowial structure
and Gauss' products of cyclotomic cosets of integers modulo p = 63
(Table 6) the results tabulated in Table 2G. Let ' denote the set of

distinct Gold sequences ¥, v and w = b + Tkv. with v and v generated by
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: k m
Table 20. Good emnx(w) oreunx(w,z) s w=uTv, 2=zuTv;p-=63.

u v Gmx(u,V) emax(w) keﬂx([X]) Gmax(w,z)

103 147

103 155

103 141

103 163

103 133

17

23

15

23

17

15

15

13

15

15

(01,0111,(27]

(7}, [91,011],
(151,(31]

(131,(21]

(31, 0s1, (73,
(11,021}

(o], [1],02a7)

G(44,45),
15% 4 G(U5,54),
G(59,62),

9 G(12,21),

G( 0, 1),
G(32,33),
G(55,56),
G(22,25),
G(34,37),
G(13,18),
13 G(26,31),
G(u7,52),
G(15,22),
G( 6,15),
G(14,23),
G( 9,20),
G(36,47),
G( 0,21),

9 G(21,30),

G( 0, 1),
15  G{ 1, 4),
G(10,17),

(k,m)

G(45,50),
G(22,25),
G(55,62),

G(33,42)

G(17,18),
G(44,45),
G( 1, 4),
G(26,29),
G( 2, 7),
G(20,25),
G(31,36),
G(s58, 0),
G(30,37),
G( 7,16),
G(20,29),
G(10,21),
Gi46,57),
G( 6,27),

G(42,51)

G(a7,32},
¢l 1, 8),
6(17,20),

G(37,44),
G(61,62),
G( 0,11)

G(20,21),
G(u7,)48),
G(20,23),
G(27,30),
G(11,16),
G(22,27),
G(39,44),
G(1&,21),
G(39,46),
G(11,20),
G(29,38),
G(20,31),
G(59, 7),
G( 9,30)

G(u45,54),
G(16,27),
G( 5,10}
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the preferred polynomial pair (103,147). The data in Table 20 shows, for
example, that a subset of sequences {w:lcEHOTﬂll,ﬂ27} yields a peak
y = L6 +2)/2]

parameter emax(w -1 = 15, VNotice also that in some seats

of sequences w, with u and v generated by a non-preferred polynomial

pair, a considerable decrease of emax(w) or emax(w,z) can be achieved --

if compared with emax(u’v) ~~ for certain choices of k or (k,m). Table 21

specifies certain combinations of (k,m) -- up to four sequences in a

subget -- for which the pericdic peak parameters are both equal or better
\ .

than Gmax(u,v, for a specific (u,v) pair.

A complete set of periodic autocorrelation parameters i{s showm
in Table 22. Furthermore, all AO/LSE sequences W = Ty(u-Tkv) were obtained
for the polynomial pairs (103,147) and (103,133) with the results reported
In Appendix E, Tables 49 and 50. For the AO/LSE phase shifts of sequences

Sine " N . - 3 -
w in the subset Lw.lcéﬂo,ﬂll,ﬂ27, of &', the values of 'max(v)’ Gmax(w,z)
and Gmax(w,z) as well as r(w,z) are shown in Tables 51 and 52 respectively.
Observe that 3 _ (w,z) = 15, in fact the function & (&) is two-valued
max v,z

for a large number of pairs of sequences s was predicted in Table 20.

0f course, other requirements may lead to d{fferent choices of

subsets. For example, one might want to achieve a lower average value --

over a subset -- of the interference pavameter r{w,z). Tables 33 and 54
show the peak correlation parameters and r(w,z) for the subset
(wﬂaEHB,Ral, ﬁg; k ¥ 18}. For this subset, the average vaiue of riw,7) is
%0’ 311'327

Let 4" be the set of distinct sequences 4, v and o = u-*Tkv. with

]

P

19%. lower than fcr subset {W:k ¥

u and v generaled by polvnomial pair (3103,141). A low wvalue of Qwa (w)
=X

= 13 -- with Gw(l) in this case s seven valued function -- is achieved for
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Table 21. Good emax(w) and emax(w,z) for selected sec-. combinations;

W = u'Tkv; zZ = u'va; p = 63.

u v amax(w) Gmax(w,z) Good (k,m) combinations
G(44,45), G(45,50), G(37,44),

103 147 15 15 G(45,54), G(22,25), G( 0,%1),
G(44,45,50), G( 0,11,44), G( 0,11,25),
G(45,54,50), G(11,25,27,54)

103 185 15 15 G(15,18), G(30,51), G(51,62), G(47,50),
G(55,62), G{37,44), G( 9,18)

G( 0, 1, 4), G(20, 9,31), G(17,18,61),
103 1 15 13 G(20,11,44), G(18,13,47), G(22,25,15),
G(22,25,27), G(u4,39,54)

103 163 15 15 G(34,37), G(45,48), G( 6,11), G(10,17),
G(37,44), G(45,54), G(12,33)

G( 0, 1), G(27,32), G(u45,54),

103 133 15 15 G( 1, 4), 6( 1, 8), G(16,27),
G( 0, 1, 4), G( o0, 1, 8), G( 1, 4,54),
G( 1,u45,584), G( 1, 4,54,27)

Table 22. Periodic autocorrelation functions for w = u-Tkv

L s 1 o1 ppemeites v e

with k‘ET!x([xD; p = 63.

u: 103 103 u: 103 103 u: 103

v: 147 133 ¥: 185 163 v: 141

k. Aax W) L8 N0 k ko8 (9 la M) kookoB () la Nk
. 15 1 3198 (o] {o0] 15 2 210 (7] (7] 136 B2 {21}
I - == --e= [11} (1] 15 2 2366 [31) {11] 13 & 3502 [13)
(. an me =e== [27]) [27] 15 & 1m0 [g9) {2M] 152 3646 [31]
| P 172 5118 (31} (5] 15 & 2622 [w5)] (3! 15 2 3782 (11}
T3 17 4 2119 [18) (15) 13 @ 3380 {11} (5] 15 2 3902 (7]
3 = ee eeee [13) {31] 23 2 66 (%) (1) 15 2 u4géz (15}
: 3 = == ~ee- {23 {11 23 2 3678 {23} {31} 124 3w 21}
" 17 8 @58 [3) (3} 23 2 w126 {1] [11w3) 154 3982 (3]
3 == o= === 5] {13} ~= == —ee= {13} {23] 18 & u302 (9]
5 . - em eeee {7 (7] 23§ &88s (3] [15) 15 3 4782 (1}
17 12 6206 [} (21 23 4 7038 (271} [9) 15 6 2526 {9}
== == === [21] (2%} 23 120me [0} {u] 136 606 [9]
T 8254 {9) (9] 23 1 g1 {21) (21} 15 6§ sp2z (27}

- - .
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the subset [w.kE'ﬂlB,T]u} of &". A low value of Gmax(w,z) 13 is achieved
for many pairs in the subset {w:k Eﬂll,ﬂz.]} of #'. The AO/BSE rhase shifte of
the sequences in subset {w:ké'ﬂls,'ﬂn} and {w:kE'ﬂll,'ﬂN} are reported in
Appendix E, Table 55. The peak correlation parameters and r(w,z) for the
subset {W:k E'ﬂlla,'ﬂ?_.]a} are shown in Tables 56 and 57.

It should be not -1 that for sequence length p = 63, lower
periodic peak parameters can be achieved for the slightly smaller sets of

Kasami Sequences (Section 5.5).

i

5.4.3. Sequence lengths p = 127 and p = 255

For sequence length p = 127 it is not possible to specify values

of k inw =y -+ Tkv such that 6 18 (u,v), whenever 4 and v are
max max
a preferred pair of m-sequences. An ordering, howave:, of the values
kE’ﬂX as a function of the cardinality La of the set {4: |9w<z)l = emax(w)}
can be found for the preferred polynomial pairs. Table Z3 gives the results.
Let & be the set of Gold sequences W, v and w =y + 5 with

¥ #and v generated by the preferred polynomial pair (211,217). A good cuoice
for a set of sequences in - with low values of La might be the subset
{w:kEﬂO,'ﬂ.;,'ﬂB} supplemented of course with u and v. Table 58 in Appendix E
speclfies the AO/LSE phase s.ifts of the sequences in subset {wik ET'\O,T\./,,TIB}
as well as {w:k e'ﬂs}. The latter merely for comparative reasons. For
the subset {W:kéﬂo,ﬂ.]} supplemented with U and V, the peak correlation
parameters and r(w,z) are given in Appendix E, Tables 59 and 60. In
addition Table 61 provides the cardinality Lc of the set [z;lew,z(m
= emax(w,z)} for the sequences in above subset. In the case that z = u or

z =v, Lc = 28 for kETlo and Lc = 27 for k€ﬂ7.

Table 24 gives results for non-preferred polynomial pairs.




La

14
18
20
20

-

22

22

24

24

26

26

26
28
28
28
30

30
32

34

36

38

Table 23.

Periodic autocorrelation functions for w = u-Tkv

75

with k:Eﬂx([x]) and (u,v) a preferred pair; 8 . (w) = 17; p = 127.

v

211

217

(0]
(7]

(3]
[13]

(191

[15]
[27]
(9]

(29]
(23]
(43]
(55

{11]
[21]
(31]
[63]
(471

(5]

21
277

(o]

(19]
[43]

(13]
(15]
7]

[3]
(9]
[27]

(63]

(29]
(51
(1]

(113

[(21]
(55]

21
325

(o]

(1]

(9]
[43]
(5]

[31]
[29]
(3]

(271
[21]

(13]
(23]

(11]
[55]

(7]
(19]
[47]
(15]

[(63)

2n
301

(3]
(13]

- [19]

(5]
[63]

(113

211

235

(0]

[13]

(9]
(29]
[27]

(19]

. [15]

(7]

(3]
(63]
(23]

(5]

(21]

(47]
(55]

211

253

k

(o]

(19]
(31]
(43]

(5]
(7]
(55]

(9]
[63]

(131
(473

{29]
[21]
(151

(3]
(23]

ISN

(11]
(27]

21
203

k

(o] .

[29]

(7]
(13]
(9]

(5]
(31]
(47]

[21]
(23]

(63]
(1]

(3]
(15]
[19]
(43]
(55]
(27]

[(11]

211
357

(o]

(29]
[31]

(s}
(63)
(1]

[19]
[11]
[23]

[15]

(71
[(21]
[55]

(3]
[13]

21
247

(o]
(u43]

(11]
[(55]

[13]
[21]

(23]
(19]

f29]
[63]

[27]
{31]

(1]
(3]
(91
[47]
[15]

(7]
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) k
Table 24. Good emax(w) ; wz wTvand (u,v) a

non-preferred pair; p = 127,

u v 8 (W) kEﬂx ([xD) 8 ax ™

211 367 U1 (01, {31, (51, (71, [91,{11}, 23
(193,0211,029],0311,(55],(63]

211313 I [47] 17
211 345 41 [31] 17
211 221 21 [0l 19
211 361 41 [63] 17
211 2714 41 [63] 17

211 375 1 fol, (11, (7],0191,(21],(23], 23
(271,{291,031],0431,047],063]

Finally, Table 25 gives some results for sequences of length
p = 255 N praferred polynomial pairs exist for this length and good
periodic correlation properties for p = 255 can better be achieved with

the small sets of Kasami sequences (Section 5.3).

5.5. Kasaml sequences

In the previous sections we investigated subsets of sequences
W=+ Tkv with p and v both m~sequences of period p = 2% -1 generated
by primitive polynomials of degree n. |

Let n be even. In this section we consider a special class of
sequences again of the type w = p + Tkv: u is an m-sequence of period
p = 2" -1 generated by primitive polynomial fl(x) and v is a sequence of

period p' = 2n/2 -1 generated by irreducible polynomial fs(x) of degree




435
4§35
435

435
435
435

v

551

T47
545
543

455
703
607

561

717

651
615
537

k
Table 25. Good emax(w) i we= ulv; p= 265,

6 (a,v)

max

63

65
47
63

31
95
63
31
31
63

47
65
63

ké'ﬂx([x])

{13, £71,0131,0151,021],[23],(25],
(271,0311,0371,0391,(451,0471,051],
[531,0611,0871,(951,01111,[127]
[91,0271,(87]

[513,0119]

(13, [91,[(25]1,(271,029],(311,(37],
(391,{43],(613,0631,0871,(95]

All
(31,0111,0371,061],{63],[91]
{171,0851(119]
ALl
A1l

(31, f9},013],0191,021],[29],(31],
(391,0531,(551,0955,0111],[127]

(171,051]
(39],0631,(87]
(51, {71, (91,0151,0191,[23],(25],

(531,0591,(631,091],[111],[127

77

8 @

33

3
31
31

31
33
17
Ea
31
31

31
33
33
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n/2 + 1. n/2 +

One can think of v as a concatination of 2

m-sequences V' of length p' = 2n/2 -1, A shift register with fl(x)fs(x)

n/2 whereby s = 2 1

as characteristic polynomial will generate 2n/2 sequences of period p = 2B -1

k n/2 _

(wand w = p+ T, k =0,1,...,2 1). Those sequences, and their

cyclic shifts, are referred to as Kasami sequences. Kasami (1966) specified
the distribution of the Hamming welght of those sequences. From this

weight distribution it follows that the periodic cross-correlation eu v('r)

takes on the value au v(1') = 2n/2 -1 for Zn-I + 211/2"1

g o (r) = - 22 n-1 _,n/2-1
u,v

values of T and

-1 for 2 -1 values of T, where T € [0, p-1].

= = T
Of course eu’v(Tz) eu,v(Tl) whenever Ty 5Ty mod p'. Hence,

; - - 1
we can determine eu V(.), T Eﬂx by specifying Bu’v(T) for 7 enx whereby

.
¥ 3

ﬂx' denotes the cyclotomic coset of integers modulo p'.
Again w = u + Tkv and £ = U + va, with 1 and v', and thus v, in

their natural orientation. Immediately we have
02 Ly, (5.10)

< <
Gmax(w)._ emax(w,z) <2

As in Section 5.2 it follows that

r

p 1f £ = 0 mod p, m-k = 0 mod p'
-p/p! if 4 = 0 mod p, m=k ¥ 0 mod p'
Gw z(z) =
’ -1 if £ # 0 mod p, £+m-k = 0 mod p'
8 (ks (£)-r(L)), otherwise
Lu,v

(5.11)

where functions 8(%) and vr(4) are gpecified as in equation (5.4) and

' o 2n/2 +

p/p 1. As a special case one obtains, with u # w,
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-p/p' if £ = 0O mod p
8, o) = (5.12)
eu v(k&i-r(i)), otherwise .
3

Notice that |6 ] = 2n/2
W,z

+1=6__ (u,v) whenever m-k # 0 mod p'.
max

Therefore Gmax(w,z) < emaX(u,v) is impossible for any subset of pairs of

Kasami sequences, and our main attention will focus on the number of

times Gmx(w,z) occurs for subsets of Kasami sequences.

i 5.5.1., Sequence length p = 63

Let fl(x) = x6 + x + 1 (103) generate m-sequence W of period

3 2 3

- p =25 -1 =63, Then £ (x) = x° +x° + 1 (015) with s =25 + 1 = 9 will

generate sequence v of period p' = 23 = 1=7, With the matrix of

X

2y
= t 1 =

Table 7 one obtains eu’v(z) 7 for ZG'HO and Tl3 while Qu’v(Z) 9

for I,ETII' .

Case 1: m=<k = 0 mod p'

With the trinomial structure of m-sequence | and v' it is easy
to show that function k + s{4)-r(4) mod p' in (5.11) does take on values in
1 = » =
Tll , for all k. Thus emx(w) emx(u,\) 9. However the cardinality

La of the set {z:[ew(z)l = emx(w)} is a function of k and one finds

22 if kenl'
la = (5.13)
24 1f kETlo', Tl3' .
Case 2: m-k # 0 mod p'
Let
' G'(x,y) = ((x-2j mod p', >~2j med p')), § = 0,1, ... (5.14)
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£ ‘ denote a éeries of pairs (x,y). With the same method as used in Section
5.3 it is easy to show that for sequence pairs GD=tL+TkV,C = |+ va)

the cardinality L¢ equals

27 1f (km) = G'(0,1), G'(1,3), G'(1,5), G'(1,6)
Le = <18 1if (k,m) = G'(1,2) (5.15)

20 if (k,m) = G'(0,3), G'(3,5) .

Observe that G'(1,2,4) are triples for which La = 22 and Lc = 18.
In the special case that m-sequence u is correlated with w = P+ Tkv one
finds Lc = 28 for k€My' and T," while Le = 27 for k€T, ",

Table 26 specifies the AO/LSE phase shifts of above discussed
Kasami sequences. The peak correlation parameters and r(w,z) are given

in Tables 27 and 28 respectively.

5.5.2. Sequence length p = 255

The results for this sequence length are of particular interest
because no preferred pairs of polynomials can be selected thus no sets
of Gold sequences exist.

Let fl(x) = x8 + xa + x3 + xz + 1 (435) generate m~sequence W

of period p =25 - 1 = 255. Thenm £ (x) = « +x + 1 (023) with

8 = 24 + 1= 17 will generate sequence v of period p' = 15. One obtains
= t . ' = - ' t
eu’v(Z) 15 fot.ZGTH_ aad ﬂ3 while e“,v(z) 17 for 2 €7 ', ﬂs and
1]
TI7.
As iu 5.5.1. one has emax(w) = Qmax(w,z) = 17 for all w and

(w,€). For sequences w, ome finds for cardinality La
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Table 26. AO/LSE sequences U and W = Ty(u-Tkv); u:103, v:015; p = 63.

w3 pre v

; s emax(w) La M(w) k Loading vy émax(w) Ta S(w) ﬁ(w)
v 9 24 3422 0 3733 60 13 4 1455 2398
1 1771 33 11 y 1395 2222

) 22 3358 2 4506 60 11 8 1331 1966

4 0263 8 11 6 1427 2350

3 5261 6 13 2 1483 2510

: 9 2l 3422 5 1043 55 11 it 1423 2270
: 6 6544 33 1 2 1247 1566
1 62 62 U g206 1 1 2 427 1646

Table 27. Correlation values for the AO/LSE sequences U and

W= T (u-T5); u:103, v:015; p = 63.

-
O
N
N
P —
[SX)
wn
(o))
[o=]

19 19 21 23 17 15 2
11 23 17 17 15 23 21
11 19 19 17 17 15
11 17T 23 21 21
9 13 21 21 1¢
g 9 11 21 17
9 9 9 11 21
g 9 9 9 N

COONW &N = O
WO WO WO WO WO OO W
O WO WO WO WO WO

O WO OO WO

Table 28. Interference parameter r(w,z) for the AQ/LSE sequences U

and W = Ty(u-Tkv); u:103, v:015; p = 63.

k 1 2 4 3 5 6 U

9570 7402 8106 7338 6846 7838 8962
6518 7982 7030 6842 8074 9022

6950 6614 6962 6242 6854

7742 6642 8770 8830

6002 6986 7638

T126 6674

8282

MW &N - O
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¥ {
110 if keno ,ﬂs

La = (5.16)
112 if k€71',ﬂ3'

For the sequence pairs (w,{) one finds for cardinality Lc¢

G'(0,5), G'(0,7); G'(7,1%), G6'(7,13);

it

102 1if (k,m)
G'(5,7), G'(5,14), G'(5,13), G'(5,11).

G'(1,2), G'(1,4); G'(3,6), G'(3,12);

[}

N 104 1if (k,m)
: G'(1,3), G'(1,6), G'(1,12), G'(1,9).

(5.17)
¢'(0,1), 6'(0,3); G'(1,5), G'(1,10);

G'(3,5), G'(3,10);

119 if (k,m)

L

G'(1,7), G'(1,14), 6'(1,13), G'(1,11);

G' (3,7, G'(3,14), G'(3,13), G'(3,11).

In the special case that m-sequence u is correlated with w one obtains

[{]

Lc = 119 foricéﬂo', T.' and ﬂ7' while Le = 120 foricéﬂl' and ﬂ3'.

5
Table 29 specifies the AQ/LSE phase shifts of above discussed

sequences while Tables 30 and 31 report the resulting peak correlation

parameters and r(w,z). Observe from Table 30 that Gc = 17 and ac = 51

for the set of AQ/LSE Xasami sequences of length p = 255 generated by

polynomial pair (fl(x),fs(x)) = (103,023). 1In contrast, Qc 2 95 and

éc = 81 for the set of AO/LSE m-sequences of length p = 255 as reported

in Table 42!
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Table 29. AQ/LSE sequences U and W = Ty(u-Tkv); u=435, v:023; p = 255.

8 (W) La MW k Loading y émax(w) Ta S M(w)

max
17 110 60606 0 2357 98 3 2 27807 50622
1 2326 239 31 4 27127 4T774
2 3551 198 29 2 28227 52174
17 112 60734 4 7430 35 23 L 29175 55982
8 5636 132 31 2 28603 53678
3 3710 2% 29 6 26399 44862
: 6 5044 220 29 4 27903 50878
i 17 112 60734 12 0261 47 3 2 27211 48110
? 9 0617 162 31 2 29287 56414
17 110 60606 5 4666 89 31 4 29407 57022
, 10 o454 89 29 4 26543 45566
7 3134 198 31 2 27079 4T710
14 2577 58 31 2 28755 5441y
17 110 60606 13 416 211 T 8 28387 52942
11 57T 147 31 2 27867 50862
1 254 254 U h136 236 25 6 9199 36542

Table 30. Correlation values for the AO/LSE sequences U and

W= Ty(u‘Tkv); ul3s, v:023; p = 255.

»
(=]

1 2 4 8 3 612 9 510 7TW1131un U

31 51 43 41 41 37 51 47 39 US 45 U3 45 U5 4t 51
17 31 51 45 43 49 41 41 39 49 39 43 U1 43 4i 45
17 17 29 45 41 47 47 41 51 45 49 41 4T U9 45 43
17 17 17 33 47 41 41 39 45 41 45 43 43 41 41 41
17 17 17 17 31 43 39 45 41 41 37 39 41 43 51 1
17 17 17 17 17 29 49 41 41 33 47 45 39 U7 37 49
17 17 17 17 17 17 29 49 45 39 U7 43 43 49 47 43
17 17 17 17 17 17 17 31 U1 4t 45 43 4S 39 41 4s
17 17 17 17 17 17 17 17 31 39 U5 43 41 49 45 43
17 17 17 17 17 17 17 17 17 31 39 49 HQ 49 41 43
17 17 17 17 17 7 17 17 17 17 29 47 43 43 43 U9
Y717 17 17 17 17 17 17 17 17 17 31 37 45 35 &9
17171717 AT 17 17 17 17 17 17 17 31 45 43 i1
17 17 17 17 17T 17 17 17 17 17 17 17 17 27 39 43
17T 1T 1T 1T 17T 1T T 17T 171717 17 17 17 31 39
17171717 17T 17 1T 1T 1T T \T 17 17 17 25
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CONCLUSIONS

The asymptotic behavior of the aperiodic correlation parameters of
random binary sequences has beca studied and an accurate approximation of the
average signal-to-noise ratio at the correlation receiver output was obtained.
This result is vury useful for preliminary system design. Those m-sequences
that are best suited for synchronization as well as multiple-access were

j reportad. The relationship between the third central moments of the odd
correlation functions and the trinomial structure of m-sequences has bean
studied. Actual data showed, however, that the third central moment is not
a very effective indication of good aperiodic correlation properties. A new
method based on Gauss' products of cyclotomic cosets was presented and applied
to obtain new subsets of sequences with better correlation properties.

The importance of the data presented in this thesis stems from its
use in the selection of sequences for SSMA systems. This can be illustrated
by a particular example. Suppose that there are K=8 users for a SSMA systeam
and expression (2.29) indicates that for the system Eb[NO, the required
sequence length {s p = 253. One should select the eight AQ/LSE
w-sequences as given in Table 41 (p. 104) i{f the synchronization and anti-
multipath requirements necessitate this. If, however, the peak cross-
correlation paramaters are of primary concern one should select eight

AQ/LSE Kasami sequences from Table 29 (p. 83) with k €

}0,,5.?7 and U

In the latter table up to sixteen users can be accommodated.
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APPENDIX A
INTERFERENCE PARAMETER FOR BARKER SEQUENCES
In this Appendix we show that r(u,v) = 2(p2-+p-1) in any set
of Barker sequences of odd period p. For all known Barker sequences
of odd peried p,
0 4 odd
C (L) = (A.1)
¢ p-l
-1y 2, £ even .

Each such a sequence gives rise to three ozhers under the transformations

{Turyn and Storer (1961))

(-1, (4.2a)
v, = % it (A.2b)
b b]
k.'“j (A.2¢)
Substitution of (A.2a) or (A.2b) into (1.7) gives
c 1) = —1)‘ 2 v
u,v( ) = ( cu'v( )
heace
Cy w426, (W) = - O A L
vhich ioplies
p-1
zei-p “u,v(£)°u,v(‘+1’ =0. (A.3)
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Furthermore we have with (A.2c)

p-1 p-1
X 4)C L41) = £ C (L 141) . .
o Cag @y B = B C e, ey (a-4)

Substitution of (A.l) into (A.4) implies that (A.3) also holds for (A.2c)
hence, we conclude with (1.20) and (A.3) that for p odd
p'l 2

r{u,v) =2 T ¢ (). (A.5)
fel-p u,v

It was pointed out in Pursley and Sarwvate (1976) that the sum in (A.5)

equals pz + p - 1 for Barker sequences.
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] APPENDIX B

BOUNDS ON THE APERIODIC CROSS-CORRELATION FUNCTION

The number of sequence pairs (u,v) for which Cu v(1,) = r with
’

0<4sp-land |r| s p-g, equals

h(t,p,r) = 2 z‘(k(pfgﬁ : (3.1)

Tt To prove (2.4) we follow the procedure of Moon and Moser (1%u3). Let

£(p,G) dencte the number of sequence pairs such that

C  (u,v) = max lc )] s6=cep) .
max 0sgsp-l WY

Bach sequence pair will be counted p times if h(i,p,r) is summed over all

£ and r such that 0 £ 2 S p-1,|r] 5 G. Therefore,

p-1

' t -1
| Pri(e.6) € LEO ;r|gs c(zp 2 )(§(§‘£+r
[+2 4
pe£(p,G) £ (26+1)2°P pél (o-2)"
£e0
s (26+1)2% ("% 4 2¢p-1)Y).
Hence,

<3/2

- - L
2% g0.0) 5 26e){p % 4 27 e 9. (3.2)

The right hand side of (B.2) decreases to zerc for p — =, Lif G(p) = p%-¢,

whereby ¢ > 0.
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Let ?(p,L,H) denote the number of sequence pairs such that
lcu v(z)l 2 H = H(p). Furthermore, let %(p,H) denote the number of pairs
b}
such that

L3

Cmax(u,v) 2 H = H(p).

Clearly,

% - 2P ot p=4
E(p,s,H) = 2P 2 ‘rlzz H<*(P“+r)>

- 2P g (PF) A

where the sum is over those integers t such that 't-%(p-z)l > AH,

Hence,
F(p,4,H) < 2Pe2P 2 exp{- (4p)~l6?)
or
P £(p,2,H) S 2p s exp{ - (Qp)-lﬂz} .
4=0
Hence,
2722 F(p,H) < 2p expl~ (4p) 1HY. (B.3)

The right hand side of (B.2) decreases to zero for p = o, 1if

~

H(p) = (?+€')(plogp)%,e' > 0 or H{p) = p%+€,§ > 0., This concludes the
proof
Conclusion: If u and v are drawn at random from the set of all 22p pairs

then

log Cmax(u’v)
% logp

-1 2 ¢} <5

F {

where lim y(p) = 0.
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T APPENDIX C

CORRELATION PARAMETERS OF sO/LSE M~SEQUENCES

‘ e Table 32. AQ/LSE me-sequencas of length p = 31.
Poly. Loading® Poly. Loading* émax(“) La S(uw)
045 11001 051 01001 7 2 107
; _ 067 00011 073 01101 7 2 123
. 075 11110 057 10010 7 2 1
i
i‘ Table 33. Correlation values for AQ0/LSE m-sequences; p = 31,
¢ 0o o0 0 0 O
b 6 7 5 T 5
5 7 5 1t 3 1
3 045 7 11 15 15 15 19
i 067 9 T 15 15 19 15
Cf 075 9 9 7 19 15 15
i 05t 11 g9 9 7 11 15
073 9 v 9 9 T 15
057 9 9 11 9 § 7

Table 34. Interference parzmeter r{u,v) for AQ/LSE m-sequences; p = 131,

045 067 075

045 2382 1Gu6 1990
067 2318 1910
075 2206
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Table 35.
Foly. Loading®
103 00c010
133 110001
147 100011
Table 36.

Table 37.

AO/LSE m-sequences of length p = 63.

103
123
147
141

155
163

Poly.

141

155
163

Correlation values

21
1
23
23
15
17

Loadingt

for AO/LSE m-sequences;

1

17
19
"

23

17
15

21
19
19
11
17
17

o111
011001
110101

1
5
5

19
k3!
25
21
i
23

émax(u) La

1
6
3

19
25
a3
17
19
"
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Interference parameter r(u,v) for AQ/LSE m-sequences; p = 63.

e et s e

103

9574

133

7954
10006

147

6958

8138
QU4
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Table 38. AO/LSE m-sequences of length p = 127.

Interfer2noc parameter r{u,v) for AC/LSE m-se;juences; p = 127.

Loadingt

1001101
1111111
1000101
0110001
0101010
0110101
1000111
0010010
1101100

277 357

Gmax(u) La

17
15
17
17
19
17
17
17
19

—h b

N EEEEOO N

23 37 33 29 29
37 29 33 27 1
29 35 33 29 29
333337 3129
27 29 31 41 31
31 29 29 31 37
33 23 29 31 27
31 53 35 35 27
31 27 27 31 39
313127 29 31
17 27 31 29 29
17 17 31 29 33
17 17 19 27 33

T AT AT 1T 1T 3

by 171717 17
41 17 17 41 17
1ITI1T 41T

323 203

41214 33622 32722 32022 29070 34394 32978 21486
40222 30954 31406 31446 2955" 3666 34118
42045 32570 33714 32974 32246 33106

Poly. Loading* Poly.
211 0010000 221
217 0000101 361
235 0001100 274
247 0010111 345
277 1110001 375
357 1110010 367
323 1110111 313
203 1101101 301
325 0000101 253
Table 39. Correlation

2 2 2 2 2 3 3
1 1t 3 4 7 85 2
175 7773
211 17 33 31 27 27 31 39
217 17 15 31 31 27 29 31
235 17 17 17 27 31 29 29
247 1T 1717 17 31 29 33
27T 17 17 17 17 19 27 33
357 T AT AT ATIT AT AN
325 17 17 ¥1 17 17 17 17
203 1T 17 41 17 17 41 17
325 17 17 17 7 41 17 @41
221 21 41 41 41 41 41 1
361 §1.21 17 41 41 4y 41
271 41 17 21 41 a7 Uy 17
345 41 U1 41 21 41 41 17
375 @1 41 17 41 21 17 41
367 "1 41 4Y Bt 17 21 17
313 41 4% 17 v VT 21
391 17 4117 17 41 17 @
253 17 17 41 4117 41 37
Table 40.
21 17 235 247
21
217
235
2u7
2717
387
323
203
325

40326 3054 32002 29546 30486
41294 31146 31938 33934

41958 31258 30806

39870 33538
39902

103

S(u)

2183
2015
2283
2255
2295
2563
2203
2087
2483

values for AO/LSE m-sequences; p - 127.

3
0 5
1

37 27
31 29
33 3
23 53
29 35
31 35
27 27
37 25
25 37
27 25
37 3
3% 29
29 33
33 39
39 27
R IR'D
17 37
b1 19

325

30250
32066
33310
33634
34202
30770
33598
32442

42894
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Table 41. AO0/LSE me-sequences of length p = 255.

-~

~

O pax(®) L

27
27
25
25
27
27
27
27

NEDEoOYN N

S(u)

9607
10927
9199
8883
9555
9875
9323
10211

m-sequences; p = 255.

5
6
1

61
51
57
u5

49
61
51
51

63 63 63 31 63 25 47
63 63 31 95 47 65 27
63 63 63 63 63 63 63
31 63 63 63 63 65 47
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Interference parameter r(u,v) for AO/LSE m-sequences; p = 255.

4
0
0
2
2

543

129690
134914
136034
126166
137750
167638

Poly. Loading# Poly. Loading®
455 01101111 551 00000111
453 01000010 651 00011110
435 10000101 561 11111110
537 10110100 765 00111100
545 01001100 515 11011001
543 10110001 615 01100010
607 00100111 703 00111101
717 00111110 747 10000100
Table 42. Correlation values for AO/LSE

4 4 4 5 5 5 6 7 5 6
5 5 3 3 4 4 0 1 5 5
5357586 3717717 11
455 27 51 51 47 43 61 49 45 61 T
453 €5 27 53 53 81 51 51 55 71 55
435 31 63 25 41 43 53 47 59 61 51
537 63 31 63 25 4T 45 49 73 55 49
545 31 95 47 65 27 61 45 57 43 57
543 63 63 63 63 63 27 49 49 77 57
607 63 63 63 65 47 31 27 47T 61 51
717 47 65 63 95 31 4T 31 27 63 &5
551 31 63 63 47 63 95 65 63 27 51
651 63 31 47 63 63 31 47 63 65 27
561 63 47 31 31 63 65 95 65 31 63
765 U7 63 31 31 63 47
515 63 63 63 63 31 65
615 95 31 65 47 65 31
703 85 47 95 63 63 63
T4T 63 63 65 63 63 63 63 31 47 65 63 95 31
Table 43.
455 4s3 435 537 545
455 168870 126358 126230 129578 12519
453 171990 131678 134322 13365
435 166870 131314 13301
537 167422 12970
5u5 16546
543
607
717

607

135586
127178
122954
131454
120510
129198
166438

n?

132554
129010
126130
131430
131462
136278
133950
168998
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APIENDIX D
MOMENTS OF APERIODIC CORREIATION FUNCTIONS OF M-SEQUENCES

In this Appendix, various moments of the aperiodic cross-
correlation and autocorrelation fum~tions are calculated. Llet g = Tu
and V = Tyv, where u and v are m-sequences in their characteristic form.
Assume that x and y are independent random variables both uniformly
distributed over the integers in the range [0, p-1]. With the aperiodic
cross-correlation for m-sequences u and v defined as in (1.7), the higher
moments of ca’;(z) can be calculated in a straightforward manner. Similarly,
the moments of Cﬁ(L), 4 # 0 can be obtained. The latter are identical to
Lindholm's (1968) moments of M-tuples when the substitution p - ‘tl =M is

used,

D.1. First moments of the aperiodic correlation functions

The conditional expectation of CG ;(z) given l-p S £ < 0, equals
3

p-1+4
E{C~ ~()/1-p<t <0} =gl ¢
u,v =0

Uiepee Vibyd
p-l+d _2,p-1 p-1

= T p L u T v,
§=0 \Zo 5‘“")\;:-0 o9/

«p2(pt1) (0.1)
p-1

which follows from the property that % uJ
=0

= .1 for any m-sequence u.

Similarly it follows that
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| elo; S0 < 4 < p-1} = P2 (pet) 0-2)

Hence, from (D.l) and (D.2), for all &
Elc. .} =p 2 - laly . (D.3)
. U,V

For the conditional expectation of Ca(l'), given 1-p < £ <0, we
have
p-1+4 -1 p-1

E{c,)/1-p <4 <0} = 320 P x§0 Yietix Ve

From the shift- and-multiply property of m-sequences (see Section 3.2)

whereby u = uj-bi-x uj+x, Vx, for some r and £ ¥ 0, one obtains simply

Jer4x

( ) p-1+4 -1 p-1 -1
E{C.(4)/1-p<£4<0i= T p T v, =-p "(p+4) -
u =0 x=0 Jer+x

Therefore, for all £ # 0
ele;@) = p7M (4] - p) - (.4)

D.2. Second moments of the aperiodic correlation functions

The conditional expectation of Ccé 5(4), given l-ps £< 0
14

9 p-l'ht 2
B{cG g)/1-pS L <0} = g jfo Wygix Viay) be

.2 p-2+L p-l+i, p-1

+ 2 L t L 5= tax “m-bm) (pél Yy Vo ) )
j=0  ao=j+l x=0 y=0 +y oy

i mas e < m e e e e s e -
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Again from the shift-and-multiply property of m-sequences
2 -2 P-2+4 p-l+4

E{c',‘2 ;(Z)/l-pfl’<0} = p+i+2p b T 1
’ j=0 m=j+l

= (p+4)[1L +p 2(p+s-1)] .

Hence, for all 4,
2 ) ~2
E{Gy 5} = (- LD i+p" -2l - 121 . (D.5)

For the conditional expectation of C%(L), given 1-p < 4 <0,
we have

‘ 2 } -1 p-2+4 p-1+4 p-1
E{CS(2)/1-p S 4 <05 =p+i+2p T T £ u _, u . u U .
u ju0  m=j+l x=0 Jodx medAx j4X mEx

With 2 # O and some r $# 0 and s # O, on can write

u ¥x .
Yiegtx Yi+x Pm-g4x Ymex T Prex Ygex ? x

Then, =u Vx, for some t because r # s. Therefore

Urex Ysex t+x’

) -1 p-2+i p-1+d
E{c@/l-psa<ol mperge2p™ T (-1
j=0 mmj+l

« Gr0L-p lpee-1)] -
Hence, for all £ ¢ 0,

elcGwd = e-lthin-p - lel-01 . (.6)

P —
.

e ———— - K . P R - Pws = - - -
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D.3. Expectation of the interference parameter r(u,v)

Consider the product of Ca’;(z) and cﬁ’;(z-+1).

E{cﬁﬁm G4+ D/1ps < - 1} =

-2 p-1+{ p+tlL p-1 p-l
p- £ T T T u

u v v
j-O m=0 x=0 Y’O J=btx m-i¥x J+y mty

oy PrlH L, peled pH op-) X ! )
" JEO e jz-:o mEO x§0 R YEOVJWVMY '
j*ﬂ: Jh'l

Hence,

-2
= - ~1} & (p+ £ (=p+L-1) .
E{C-'u’v(l) c"u,'\?u'+ 1)/1-p < 4 <=1} n+ L)y ep )
For all 4 ome finds

(pet-Lpi(-p-4-2) 0<4<p-1

B{Cg () cﬁﬁuu)} = (@.7)

(p+4) pi(-p+i-1) lep<ss-l
Substitution of (D.5) and (D.7) in the expression of the interference

parameter r(u,v) defined in (1.20) gives

- p-1
ElrG,¥)) = I."Il:-p {zr.{céﬁ(z)} + Bleg g ¢ g+ 1]

- p-l -
26!+ pienTh vz T 1w 2D
=1

Hence,

E{r@,%)) = 2p° - 1+ h) . (0.8)

n e S——————m e = 4 a O - ra. - —— ar e
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Also of interest is the product of Cﬁ ;(Z) and Cﬁ' ‘.,,(L - p) vhereby
L4

b3
0<1 <p-l.
E{Cﬁ,;(l-p) Caﬁ(l)/o < LS p-l}l =

g 471 pl-t gp-l p-1 \

=P jEO Lo \Ep Citax o) (yE‘J Vity ety

because, indeed j # 4 +m whenever 0 < j < £4~1 and 0 < m < p-1-4.

Therefore, with C. ~.(-p) = 0,
u,v

B(g 5(4-P) Gy (/0 S 4 < p-1) = p24G-8) - (0.9)

In a similar mamner, it follows that

B{C;(4-p) CuU/0 < & < p-1) = p ' 4(-p) - 0-10)

D.4. Third moments of the aperiodic correlation functions

0of most interest is the third moment of CG ‘-;(L).
3

3 -
Eley qW/1p<a<0] =

p-l+i 3 p-l+i
-g{ T ({3"‘))}4'3(94»&)2{ £t §, .V}
j=0 3£ ] =0 3£
p-l+i p=3+i p-2+L p-ltd
- 3 bt - : b -~ ~ - o e
£t on “J'iv.i} + 3t 8l on m-?ﬂ “,mx,u Uy-t¥metUn-t"y m'n )

P lpenBR+L) 2] 4+
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-2 p=3+4{ p-2+4 p-l+4 p-l

+6p [ % > T L ou . u 8 ]
j=0 o=j+l n=m+l x=0 =A% m-dx n-dx

p=3+4 p-2+4 p-l+L p-l
{ T z z T v
j=0 m=j+l o=+l y=0

4y ey o)

Let l-p < 4 < 0. Whenever there exist a three-tuple (j,m,n) such that

uj-z-hc um_z_m ® U Vx (D.11)

and
0<j<m<n<p-l+4 (D.12)

p-1
the sum § u

x=0
not exists, i.e., Yo gex Unezex Sn-tex - Ch-gix
p-1
L u u u =
x=0 j=Ax Tm-4x n-gx

for which (D.12) holds, there are B§(p+£) three-tuples for which (D.1ll)

j- Uotix Caetx - P Whenever such a three-tuple does

, some h, the aum

-1. Of the (p;t) possible three-tuples (j,m,n)
holds for m-sequence u. Hence,
E(CD S ()/1-p S2£< 0} = p 230 +2) 21 +1) +
»

s 2P ) pennt e a1 -(PYE) s er Bl e )
For all L one obtains
B(c) o) = p7 (360 - a7 - 266~ 14D +6{73 )2 5 .
o2 n (P31H) - Leh +8Y 6 - f2Dy)

+6p o+ 1) 850 - |2]) Bye - 2D - (0.13)
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A similar procedure for the autocorrelation function gives,

for L # 0,
e} = o7t -p)’ +ep7 o+ 1B 0 - 4D (0.14)

as previously derived by Lindholm (1968).

D.5. Expectation of a product of aperiodic correlation functions

Finally we derive the expectocion of the product of Cé v(£-p)
]

and cﬁ,v(z).

2 4-1 . .2 p-l-2 )
E{cﬁﬁ(z-p) cﬁ’v(z)/o < 4 < p-1} = E{ (uj_zvj) TOU oV 4
jaG jno
o 42 2-1 p-1,p-1 4-2 2-1 ,p-1 p-1
+2p° ¢ g ¢ (z £t £ (s ¢ ).

3=0 wai+l =g ‘x=0 Uj-tixn-f4x n-L4x” 350 w=j+ 0=t y=0 Yty miy ney

Tet 0 < 4 < p-1, Whenever there exists a taree-tuple (J,m,n) such that

Oy opix Vet " Cackx 0 X (D.15)
and
0S j<apS4-1; £3SasSp-l (D.16)
p-1
the sum L Us.pax Uoogax Ynegex T P In the other cases this sum equale
x=C

~1. Of the (2)(p-z) possible three-tvple (j,m,n) for which (D.16) holds,
there are c‘;u) three-tuples for which (D.15) holds.

With C; ;(-p) = 0, one obtains

2 .,
B(CG g(t-p) Gz (/0L <p-1} = p "i(p-b) +

+ 2672 (H) -0+ G+ DA WI-F) -0 + G+ 1 W] - (D-17)
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A similar procedure for the auto-correlation gives

- - 2
ek (ep) /0 < 2 < p-1} = - a0 + 297 (7)) (o) + @+ IS (I,

(D.18)

D.6. Relationship betweenﬁﬂg(t) and C;(_&)_

For any m-sequence u one has the relation '

C tb-pj +C (4) =R, (4) = -1, 0<t< 9-1-‘;

]
N

E[c\-ﬁ(z-p) CG(4)/0 < LS p-1) = Bi-cé(z-pwo <2< p-1) -s{%(z-p)/oqu-l}.

Hence, the left-hand side of (D,18) can be written as

Substituting (D.14) and (D.6) results in .
E(CR(L-p) G;()/0 < 2 < p-1) = p (L2 p+2-1) -6(p+1) BY(D] . (D.19)
A ccomparison between (D.18) and (D.19° gives
33 + Sy = (4) . (0.20)

Indeed, this relationship cam be obtained from the conditioms (D.1l), (D.12)
and (D.16) immediately, as follows. Again 0 < 4 S p-1. uhenever (D.11)
holds for Bl;(l,) three-tuples, i.e., whereby 0 < j <@ < n £ i-1, thrie

will be 382(!.) three-tugles (j,m,n) such that (D.15) holds vhereby

0< j<m<L-l, 0<n<L-1. Notice that there are (g) possible choices
for the pair (J§,m) such that 0 < j <= < £-1 and thus one coucludes with

sondition (D.16) that (D.20) must hold.
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. D.7. Fourth moments of the aperiodic correlation functions

Equally straightforward as the derivations of the third moment

of C; ;(t) in Section D.4, it is not difficult te show that
 J

[
L. 4 -2
eleg ;) = @ -[1D(36p - 1£]) -2+2p™ (3p-1a] - 411p - 12| - 11]
: AL P Y R TY R LN I B (- 14]))
! -2 2
: +2p "+ 1B (p-|thEp- 2] .
vhere Bz(p -IEI) denotes the number of four-tuples (j,m,n,t) sucht that
u, _u u =y y ¥x
j=x m-x n-x t-x
and 0<j<m<a<et<p-jg]l-1.
Notice that the underlined part of E{Cé ;(ﬁ)} equals the fourth moment of
CK ;(z) for rendom binary sequences (see Chapter 2).
The fourth moment of cﬂ(z), 2 ¢4 0, is given by Lindholm (1968).
.-
¢ 1
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Table 44, AOQ/LSE sequences W = Ty(U°Tkv); u:045, v:075; p = 31.

emax(w) La Mw)

7 10 510

9 2 766
9 4 830
9 6 798
9 6 1086
9 8 1054

9 10 1310

-
H
L.

[N RPN

k Loading vy emax(w) La

7150

3446
1764
4377
7017
3354

3007
T112
3125
1602
Q750

2776
3440
6651
T046
4503

4552
4421
5151
2221
1110
4o60

3631
6741
3043
1262
0655

5212
1646
7072
7613
7002

20

y

8
15
28
10

30
23
8
16
1

27
9
16
7
3

22
26
13
10

9

-
&

19
28
14
6
2

10
30
17

4
14

Ui

R I Rt O R NT B EN RV,

-~ ! -33=3

-~ -~~~ O O U WO

AN OV S MNDOVI o]

&= O NN A =N

&= oo,MmN

1

0
6
Yy
2
4

S(w)

203

323
339
271
291
355

291
303
319
311
379

267
29N
283
319
355

399
375
379
359

399

363
N
335
419
479

475
471
439
423
439

302

526
590
318
398
654

334
382
4y
414
686

270
366
334
478
622

510
41y
430
350

510

398
270
286
622
862

590
574
4us
382
446

f((w)
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‘Table 45. AO/LSE sequences W = Ty(u-Tkv); u:0l45, v:067; p = 31.

Gmax(w) La
7 10
9 2
9 )
9 6
g &
9 8
9 10

M(w)

510

766

830

798

1086

105%

1310

k Loading vy emax(w) Ia S(w) MW

0

14
28
25
19

1
22
13
26
21

12

-

2u
tia

15
30
29
27
23

1723

6522
5730
5333
3427
1347

4427
3053
1021
3044
4103

5354

L641
biuo
7553
6174

2102
o1y
\TR
#0336
5214

3202
[
6634
j2u2
6187
45013

B4y
3235
Liy7
2228
5451

13

26
2
2

17

12

15

25
26

1
23

20

19
19

18
26

O D 2 2 3D 3 -3~ -3 =3 N -3 ~3 =3 =3 ~3 (G R PR R ]

3~ ~d 3

—
AN IS BNV g V) RO M N DR QO MNMN N R

& £ 400

N RO

235

323
275
283
307
219

29
3in
291
323
295

319
287
247
295
in

355
427
355
a1
367

xn
391
§15
n
415

455
U9
835
Nl
451

430

526
334
366
462
356

334
414
334
462
350

478
350
190
382
hi6

334
622
334
558
382

254
510

606

510
606

510
366
430
478
494
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La M(w)
10 510
2 766
4 830
6 798
6 1086
8 1054
10 1310

k Loading
0 6537
7 5713
14 5624
28 3551
25 3530
19 4376
3 1401
6 5224
12 4621
24 su2y
17 1014
11 3676
22 0227
13 62M
26 4317
21 7615
1 7000
2 0200
4 1201
8 5713
16 6056
5 3602
10 6552
20  402%
9 2028
1§ 6052
15 7057
30 232
29 3140
2T 322%
23 H334

hid

J

27
18
12
27

30

8 (W) 12
7 y
7 6
5 Y
5 8
7 2
5 6
5 0
7 6
7 2
S 2
9 2
7 2
7 2
7 8
9 2
5 8
7 2
7 4
7 4
7 6
i 2
7 2
7 i
5 8
5 8
7 4
7 2
7 %
5 6
7 n
9 2

S(w)

263

351
243
275
279
251

295
335
299
375
315

275
315
343
303
271

351
395
367
351
379

387
375
33%
347
359

47
455
396
§59
u67
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‘Table 46. AO/LSE sequences W = Ty(u'Tkv); u:067, v:075; p = 31.

f((w)

542

638
206
334
350
238

350
510
366
670
430

*79
~02
574
b1y
286

318
4ol
382
318
430

814
446
286
334
382

318
510
270
526
558



I
¢
o 117
sor .
R Table 47. ~Correlation values for the AO/LSE sequences U, V and
: ! ; W= Ty(u-'rkv); u:045, v:075; kGTIO and ﬂs :p = 31,
A
o
..% i k 00 5 10 20 9 18 U V
? O 5 17 15 11 11 11 11 13
5 9 9 15 11 11 13 13 15
A 10 9 T T 13 11 17 15 11
. ! 20 9 9 7 7T 13 11 13 13
Lo 9 g 9 9 7 T 11 11 15
i 18 9 7 9 9 T T 13 13
S U 9 9 9 9 9 9 7 15
[ v 9 9 9 9 ¢ 9 9 17
‘ Table 48. Interference ba;rametex' r{w,z) for the AO/LSE sequences U, V and
W= 'ry(u"rkv); -u:OHS,_ v:075; kéﬂo and 'ﬂs 1 p = 31,
j j - K 5 10 20 9 18 U ¥
i . 0 2006 1942 2050 1846 1830 1742 1702
c : 5 ' 185“V 2578 2470 1918 2190 2142
10 . ,;1898 '2u06 1830 1846 1790
20 , 2106 2146 2090 1858
9 _ 1582 2206 2054
18 . 1678 1526
U B | 1990
i
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Table 51. Correlation values for the £7)/LSE sequences W = Ty (u-Tkv);

us103, v:147; k €My, M, and 1127 i p = 63,

e AR tagtr %3

k 0 11 22 Uk 25 50 37 27 S4 45

0 13 27 23 21 21 27 19 17 19 21
1 15 11 21 17 19 26 19 19 17 19
22 15 17 13 23 17 21 19 23 19 17
Ly 15 15 17 13 17 23 19 25 23 19
25 15 15 15 17 13 19 21 23 23 17
50 15 15 15 15 17 11 21 19 19 19
37 15 17 15 15 15 17 11 23 23 19
27 17 15 17 15 15 17 15 9 17 17
54 17 15 15 17 15 15 17 15 11 19
U5 17 17 15 15 17 15 15 15 15 11

Table 52. Interference parameter r(w,z) for the AO/LSE sequences
k
W=D (uTv); uil03, viI47; k€T, ”11 and ﬂ27 : p = 63.

k 1" 22 Ly 25 50 37 27 54 45
0 8602 8122 9470 8314 8270 8098 8830 9194 9814

1" 9142 8794 9022 8498 9278 8258 7798 9uk2
22 10098 8662 8762 8446 8474 7798 8234
44 10690 9014 8538 8902 9370 9110
25 10506 8814 9714 9214 10850
50 9890 9798 7914 8366
37 8506 8830 7882
a7 T746 7974

S4 8874

e e — v . . . PGPSR U S « prere - R
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Table 53, Correlation values for the AQ/LSE sequences W = Ty(u.Tkv);

Table 54,

us103, v:147; k€ﬂ3, 1121 and 'ﬂg, k¥18; p = 63.

12

48

33
21
42

36

13
17
17
17
17
17
17
17
17
17

24

19
17
19
15
17
17
17
17
17
17

48 33

15 21
19 17
19 21
19 21
13 23
17 1"
17 17
17 17
17 17
17 17

19 23

17 21
19 19
19 29
29 21
1719
15 21
17 13
17 17

36

17
19

21

19
15
19
19
21
15
15

Interference parameter r(w,z) for the AO/LSE sequences

W= Ty(u-Tkv); u:103, v:147; kETI3, T, and 719, k#18; p = 63.

12
24
48
33
21
42

10886

12

24

6602 7870
8162 6958

7298

48

6358
8606
5738
8526

33

8358
T022
T410
7926
7598

21

6922
7562
6582
7242
7530
6554

42

7186
6266
4534
6050
5114
6266
7214

11286
7462
7578

10526
6894
TT42
682
5474

36

6342
6798
TO34
5998
7614
8646
5490
63u6
5638



BT T ST e -

- 122
AR I
coor L Table 55. AQ/LSE sequences W = Ty(u-Tkv); us103, v:141;
» ﬁ | k€My1s Tygs Nyge and Typs p = 63
é l | Gmx(w) La M(w) k Loading vy emax(w) La  S(w) M(w)
: 13 6 3182 21a 2223 41 13 1339 2174
: b 6053 2
2 42a 6463 57 11 1207 1646
s b 1103 28
N (132 3745 41 11 1247 1486
\ b 0564 10
P i 26a 7514 29 13 1339 1854
Py b 3520 9
: 52a 3262 48 13 1375 1998
i b 7110 27
: 13 6 3502 4 41a 5341 59 13 1431 2222
: b 7313 27
' 19a 4571 37 13 1475 2398
b 0545 8
. 38a 0367 56 11 1283 1630
! b 7172 33
.:’
! 11a 5062 4y 13 1551  2u62
: b 5615 9
22a 3320 0o 1 1635 2798
b 0430 42
U4a 4026 58 11 1311 1502
b 1127 25
15 2 3742  25a 4203 37 13 1463 2110
b 1575 2
50a 7286 56 11 1327 1566
b 2103 21
37a 4326 57 13 1467 2126
b 0721 33
27a 0431 62 13 1775 2078
b 4507 38
15 6 5022 Sa 1601 56 13 1863 2430
b 145 17
4sa W12 s8 1 1843 2350
b 6022 28



Table 57.

"
22
4y
25
50
37
27
54

1"
22
Ly
25
50
37
a7
54
45

22

11 22 44

13 23 21
15 11 19
13 15 1
15 13 15

15 13 15
13 13 15
15 13 13
13 15 13

4y 25

8154 6366 5638

8730 7538
8365

25

15

4
17
13
15
13
13
15
13

50

6014
7650
6150
T734

37

7650
6590
6738
6858
7970

27

21
27
21
15
19

13
15
15

27

6110
7322
9230
6766
6406
7570

54

21
17
23
17
21
25
19
13
15

54

45

19
21
19
29
a1
19
17
17
"

§190
7034
T694
9254
6966
8122
8550

Table 56. Correlation values for the AO/LSE sequences W = fy(uoTkv);

Interference parameter r(w,z) for the AO/LSE sequences

W= 'P’(u-Tkv); u:103, v:1h1; k€M1, Noga 5 P = 63,

45

5962
8022
6666
6658
7946
6934
6866
7946
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Table 58. AOQ/LSE sequences ¥W = Ty(uoTkv); u:211, v:217;

JORP
17 14
17 18
17 22
17 38

Mw)

10430

k Loading vy émax(w) La

0

14
28

13374 { 56

14526

19582

112
97
L 6T

12
24
48
96a

65

10
20
40
80

33
66

03121

32357
36341
66225
73375
13367
07553
33553

54364
20430
60012
25226
04210
51060
24430
11654

60763
12732
10774
57743
73550
3TN
61443

103

78
29
1
103
85
109
32

55
60
46
L7
75
55
54
108

12
34
98
100
83
33
29

21

19
19
19
19
21
19
13

17
17
19
19
19
21

19

19
21
21
17
19
19
19

N NN OO coME==NNMNDMND n

=

E—JF —gl \S R o - I —g (VRN \V

S(w)

5447

5563
5463
5571
5651
6535
6307
4815

5839
5863
6291
6235
5695
6407

6739

7527
7175
8327
6987
747
7823
7219

ﬁ(w)

11358

8878
8478
8910
9230
12766
11854
5886

8830
8926
10638
10414
8254
11102

12430

10526
11518
13726

8366
11406
11710

9534
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Table 59, Correlation values for the AO/LSE sequences U, V and

14
28
56
112
97
67

Table 60.

21
17
17
17
17
17
17
17
17
17

27
19
17
17
17
17
17
17
17
17

27
21
19
17
17
17
17
17
17
17

28

31
35
K}
19
17
17
17
17
17
17

56 1

31
27
37
31
19
17
17
17
17
17

12

43
31
31
27
27
21
17
17
17
17

97

35
29
3
25
35
27
19
17
17
17

67

31
29
N
31
25
29
31
13
17
17

w:ﬁwﬂhhuﬁﬂ,wﬂhké%amﬂﬁp=1W.

Interference parameter r(w,z) for the AO/LSE sequences U, V an

W= Ty(u-‘rkv); us21t, v:217; ke'ﬂo and T].I.; p = 127.

7

0 31746 31078 30090 29106
7 32474 30750 30030
35018 30586
29022

14
28
56
112
97
67
U

Table 61.

14

28

56

112

33878 34338 30942 31350

97

67

U

32082 32942 31626 33034
34670 34978 34998 32158
31866 32542 31026 32394
31258 30854 29946 30482
31450 33206 32982
34282 33226

31670

v

28798
32042
34166
33522
28882
32918
35002
31886
33622

Cardinality Lec for (k,m) of sequence pairs

{w = u~Tkv, z = u.TaV); vid1l, v:217 ; p = 127.

(k,m)

G(o, 7
G( 7,14)
G( 7,28)
G( 7,56)

Lo

37
20
18

19
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